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10.1. Introduction

It has been established since long, that the surfaces
of the bodies are never perfectly smooth. When, even a very
smooth surface is viewed under a microscope, it is found to
have roughness and irregularities, which may not be detected
by an ordinary touch. If a block of one substance is placed
over the level surface of the same or of different material, a
certain degree of interlocking of the minutely projecting par-
ticles takes place. This does not involve any force, so long
as the block does not move or tends to move. But whenever
one block moves or tends to move tangentially with respect
to the surface, on which it rests, the interlocking property of
the projecting particles opposes the motion. This opposing
force, which acts in the opposite direction of the movement
of the upper block, is called the force of friction or simply
friction. It thus follows, that at every joint in a machine, force
of friction arises due to the relative motion between two parts
and hence some energy is wasted in overcoming the friction.
Though the friction is considered undesirable, yet it plays an
important role both in nature and in engineering e.g. walk-
ing on a road, motion of locomotive on rails, transmission of
power by belts, gears etc. The friction between the wheels
and the road is essential for the car to move forward.

10.2. Types of Friction

In general, the friction is of the following two types :
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1. Static friction. It is the friction, experienced by a body, when at rest.

2. Dynamic friction. It is the friction, experienced by a body, when in motion. The dynamic
friction is also called kinetic friction and is less than the static friction. It is of the following three
types :

(a) Sliding friction. It is the friction, experienced by a body, when it slides over another
body.

(b) Rolling friction. It is the friction, experienced between the surfaces which has balls or
rollers interposed between them.

(c) Pivot friction. It is the friction, experienced by a body, due to the motion of rotation as
in case of foot step bearings.

The friction may further be classified as :

1. Friction between unlubricated surfaces, and

2. Friction between lubricated surfaces.

These are discussed in the following articles.

10.3. Friction Between Unlubricated Surfaces

The friction experienced between two dry and unlubricated surfaces in contact is known as
dry or solid friction. It is due to the surface roughness. The dry or solid friction includes the sliding
friction and rolling friction as discussed above.

10.4. Friction Between Lubricated Surfaces

When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction
may be classified into the following two types depending upon the thickness of layer of a lubricant.

1. Boundary friction (or greasy friction or non-viscous friction). It is the friction,
experienced between the rubbing surfaces, when the surfaces have a very thin layer of lubri-
cant. The thickness of this very thin layer is of the molecular dimension. In this type of friction, a
thin layer of lubricant forms a bond between the two rubbing surfaces. The lubricant is absorbed on
the surfaces and forms a thin film. This thin film of the lubricant results in less friction between
them. The boundary friction follows the laws of solid friction.

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between
the rubbing surfaces, when the surfaces have a thick layer of the lubrhicant. In this case, the actual
surfaces do not come in contact and thus do not rub against each other. It is thus obvious that fluid
friction is not due to the surfaces in contact but it is due to the viscosity and oiliness of the lubricant.

Note : The viscosity is a measure of the resistance offered to the sliding one layer of the lubricant over an
adjacent layer. The absolute viscosity of a lubricant may be defined as the force required to cause a plate of unit
area to slide with unit velocity relative to a parallel plate, when the two plates are separated by a layer of
lubricant of unit thickness.

The oiliness property of a lubricant may be clearly understood by considering two lubricants of equal
viscosities and at equal temperatures. When these lubricants are smeared on two different surfaces, it is found
that the force of friction with one lubricant is different than that of the other. This difference is due to the
property of the lubricant known as oiliness. The lubricant which gives lower force of friction is said to have
greater oiliness.

10.5. Limiting Friction

Consider that a body A  of weight W  is lying on a rough horizontal body B as shown in Fig.
10.1 (a). In this position, the body A  is in equilibrium under the action of its own weight W , and the
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normal reaction RN (equal to W ) of B on A . Now if a small horizontal force P1 is applied to the body
A  acting through its centre of gravity as shown in Fig. 10.1 (b), it does not move because of the
frictional force which prevents the motion. This shows that the applied force P1 is exactly balanced
by the force of friction F1 acting in the opposite direction.

If we now increase the applied force to P2 as shown in Fig. 10.1 (c), it is still found to be in
equilibrium. This means that the force of friction has also increased to a value F2 = P2. Thus every
time the effort is increased the force of friction also increases, so as to become exactly equal to the
applied force. There is, however, a limit beyond which the force of friction cannot increase as shown
in Fig. 10.1 (d). After this, any increase in the applied effort will not lead to any further increase in the
force of friction, as shown in Fig. 10.1 (e), thus the body A  begins to move in the direction of the
applied force. This maximum value of frictional force, which comes into play, when a body just
begins to slide over the surface of the other body, is known as limiting force of friction or simply
limiting friction. It may be noted that when the applied force is less than the limiting friction, the body
remains at rest, and the friction into play is called static friction which may have any value between
zero and limiting friction.

Fig. 10.1. Limiting friction.

10.6. Laws of Static Friction

Following are the laws of static friction :
1. The force of friction always acts in a direction, opposite to that in which the body tends to

move.
2. The magnitude of the force of friction is exactly equal to the force, which tends the body

to move.
3. The magnitude of the limiting friction (F ) bears a constant ratio to the normal reaction

(RN) between the two surfaces. Mathematically

        F/RN = constant
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4. The force of friction is independent of the area of contact, between the two surfaces.

5. The force of friction depends upon the roughness of the surfaces.

10.7. Laws of Kinetic or Dynamic Friction

Following are the laws of kinetic or dynamic friction :
1. The force of friction always acts in a direction, opposite to that in which the body is

moving.
2. The magnitude of the kinetic friction bears a constant ratio to the normal reaction between

the two surfaces. But this ratio is slightly less than that in case of limiting friction.
3. For moderate speeds, the force of friction remains constant. But it decreases slightly with

the increase of speed.

10.8. Laws of Solid Friction

Following are the laws of solid friction :
1. The force of friction is directly proportional to the normal load between the surfaces.
2. The force of friction is independent of the area of the contact surface for a given normal

load.
3. The force of friction depends upon the material of which the contact surfaces are made.
4. The force of friction is independent of the velocity of sliding of one body relative to the

other body.

10.9. Laws of Fluid Friction

Following are the laws of fluid friction :

1. The force of friction is almost independent of the load.

2. The force of friction reduces with the increase of the temperature of the lubricant.

3. The force of friction is independent of the substances of the bearing surfaces.

4. The force of friction is different for different lubricants.

10.10. Coefficient of Friction

It is defined as the ratio of the limiting friction (F) to the normal reaction (RN) between the
two bodies. It is generally denoted by µ. Mathematically, coefficient of friction,

µ = F/RN

10.11. Limiting Angle of Friction

Consider that a body A  of weight (W ) is resting on a horizontal plane B, as shown in Fig. 10.2.
If a horizontal force P is applied to the body, no relative motion will
take place until the applied force P is equal to the force of friction
F, acting opposite to the direction of motion. The magnitude of this
force of friction is F = µ.W  = µ.RN, where RN is the normal reaction.
In the limiting case, when the motion just begins, the body will be
in equilibrium under the action of the following three forces :

1. Weight of the body (W ),

2. Applied horizontal force (P), and

3. Reaction (R) between the body A and the plane B.
Fig. 10.2. Limiting angle of

friction.
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The reaction R must, therefore, be equal and opposite to the resultant of W and P and will be
inclined at an angle φ to the normal reaction RN. This angle φ is known as the limiting angle of friction.
It may be defined as the angle which the resultant reaction R makes with the normal reaction RN.

From Fig. 10.2, tan φ = F/RN = µ RN / RN = µ

10.12. Angle of Repose

Consider that a body A of weight (W ) is resting on
an inclined plane B, as shown in Fig. 10.3. If the angle of
inclination  α of the plane to the horizontal is such that the
body begins to move down the plane, then the angle α is
called the angle of repose.

A little consideration will show that the body will
begin to move down the plane when the angle of inclination
of the plane is equal to the angle of friction (i.e. α = φ). This
may be proved as follows :

The weight of the body (W ) can be re-
solved into the following two components :

1. W  sin α, parallel to the plane B.
This component tends to slide the body down
the plane.

2. W cos α, perpendicular to the plane
B. This component is balanced by the normal
reaction (RN) of the body A  and the plane B.

The body will only begin to move
down the plane, when

W  sin α = F = µ.RN = µ.W cos α ...(∵ RN = W cos α)
∴ tan α = µ = tan φ    or   α = φ ...(∵ µ = tan φ)

10.13. Minimum Force Required to Slide a Body on a Rough Horizontal
  Plane

Consider that a body A of weight (W ) is resting on a
horizontal plane B as shown in Fig. 10.4. Let an effort P is
applied at an angle θ to the horizontal such that the body A
just moves. The various forces acting on the body are shown
in Fig. 10.4. Resolving the force P into two components, i.e.
P sin θ acting upwards and P cos θ acting horizontally. Now
for the equilibrium of the body A ,

RN + P sin θ = W

or RN = W – P sin θ            ...(i)
and P cos θ = F = µ.RN               ...(ii)

...(∵ F = µ.RN)

Substituting the value of RN from equation (i), we have

P cos θ = µ (W – P sin θ) = tan φ (W – P sin θ) ...(∵ µ = tan φ)

( )sin
sin

cos
W P

φ= − θ
φ

Fig. 10.3. Angle of repose.

Friction is essential to provide grip between tyres
and road. This is a positive aspect of ‘friction’.

Fig. 10.4. Minimum force required
to slide a body.
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P cos θ .cos φ = W  sin φ – P sin θ.sin φ

P cos θ.cos φ + P sin θ.sin φ = W  sin φ
P cos (θ – φ) = W  sin φ ...[�cos θ. cos φ + sin θ.sin φ = cos (θ – φ)]

sin

cos ( )

W
P

φ=
θ − φ       ...(iii)

For P to be minimum, cos (θ – φ) should be maximum, i.e.

cos (θ – φ) = 1 or θ – φ = 0° or θ = φ
In other words, the effort P will be minimum, if its inclination with the horizontal is equal to

the angle of friction.

∴ Pmin = W sin θ ...[From equation (iii)]

Example 10.1. A body, resting on a rough horizontal plane required a pull of 180 N inclined
at 30º to the plane just to move it. It was found that a push of 220 N inclined at 30º to the plane just
moved the body. Determine the weight of the body and the coefficient of friction.

Solution. Given : θ = 30º

Let W = Weight of the body in newtons,

RN = Normal reaction,

µ = Coefficient of friction, and

F = Force of friction.

First of all, let us consider a pull of 180 N. The force of friction (F) acts towards left as shown
in Fig. 10.5 (a).

Resolving the forces horizontally,

F = 180 cos 30º = 180 × 0.866 = 156 N

Fig. 10.5

Now resolving the forces vertically,

RN = W – 180 sin 30º = W – 180 × 0.5 = (W  – 90) N

We know that F = µ.RN     or    156 = µ (W – 90)   ...(i)

Now let us consider a push of  220 N. The force of friction (F) acts towards right as shown in Fig.
10.5 (b).

Resolving the forces horizontally,

F = 220 cos 30º = 220 × 0.866 = 190.5 N
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Now resolving the forces vertically,

RN = W  + 220 sin 30º = W + 220 × 0.5 = (W + 110) N

We know that F = µ.RN     or    190.5 = µ (W  + 110) ...(ii)

From equations (i) and (ii),

W = 1000 N,   and   µ = 0.1714   Ans.

10.14. Friction of a Body Lying on a Rough Inclined Plane

Consider that a body of weight (W ) is lying on a plane inclined at an angle α with the horizon-
tal, as shown in Fig. 10.6 (a) and (b).

(a) Angle of inclination less than (b) Angle of inclination more than
angle of friction. angle of friction.

Fig. 10.6. Body lying on a rough inclined plane.

A little consideration will show that if the inclination of the plane, with the horizontal, is less
than the angle of friction, the body will be in equilibrium as shown in Fig. 10.6 (a). If,in this condi-
tion, the body is required to be moved upwards and downwards, a corresponding force is required for
the same. But, if the inclination of the plane is more than the angle of friction, the body will move
down and an upward force (P) will be required to resist the body from moving down the plane as
shown in Fig. 10.6 (b).

Let us now analyse the various forces which act on a body when it slides either up or down an
inclined plane.

1.  Considering the motion of the body up the plane

Let W = Weight of the body,

α = Angle of inclination of the plane to the horizontal,

φ = Limiting angle of friction for the contact surfaces,

P = Effort applied in a given direction in order to cause the body to slide with
uniform velocity parallel to the plane, considering friction,

P0 = Effort required to move the body up the plane neglecting friction,

θ = Angle which the line of action of P makes with the weight of the body W ,

µ = Coefficient of friction between the surfaces of the plane and the body,

RN = Normal reaction, and

R = Resultant reaction.
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When the friction is neglected, the body is in equilibrium under the action of the three forces,

i.e. P0, W and RN, as shown in Fig. 10.7 (a). The triangle of forces is shown in Fig. 10.7 (b). Now
applying sine rule for these three concurrent forces,

                       
0 or

sin sin ( )

P W=
α θ − α  * 0

sin

sin ( )

W
P

α=
θ − α

...(i)

(a) (b) (c)

Fig. 10.7. Motion of the body up the plane, neglecting friction.

When friction is taken into account, a frictional force F = µ.RN acts in the direction opposite
to the motion of the body, as shown in Fig. 10.8 (a). The resultant reaction R between the plane and
the body is inclined at an angle φ with the normal reaction RN. The triangle of forces is shown in Fig.
10.8 (b). Now applying sine rule,

sin ( ) sin[ ( )]

P W=
α + φ θ − α + φ

(a) (b) (c)

Fig. 10.8. Motion of the body up the plane, considering friction.

* 1. The effort P0 or (or P) may also be obtained by applying Lami’s theorem to the three forces, as
shown in Fig. 10.7 (c) and 10.8 (c). From Fig. 10.7 (c),

0

sin (180º ) sin[180º ( )]

P W=
− α − θ − α

or                                                                        
0

sin sin ( )

P W=
α θ − α ...[same as before]

2. The effort P
0
 (or P) may also be obtained by resolving the forces along the plane and perpendicular to

the plane and then applying ΣH = 0 and ΣV  = 0.
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∴           
sin( )

sin[ ( )]

W
P

α + φ=
θ− α + φ ...(ii)

Notes : 1. When the effort applied is horizontal, then  θ = 90º. In that case, the equations (i) and (ii) may be
written as

 0

sin sin
tan

sin (90º ) cos

W W
P W

α α= = = α
− α α

and                                                 
sin ( ) sin ( )

tan ( )
sin[90º ( ) cos ( )

W W
P W

α + φ α + φ= = = α + φ
− α + φ α + φ

2.  When the effort applied is parallel to the plane, then θ = 90º + α. In that case, the equations (i) and
(ii) may be written as

                                           0

sin
sin

sin (90º )

W
P W

α= = α
+ α − α

and                                             
sin ( ) sin ( )

sin[(90º ) ( )] cos

W W
P

α + φ α + φ= =
+ α − α + φ φ

                                               
(sin cos cos sin )

(sin cos . tan )
cos

W
W

α φ + α φ= = α + α φ
φ

                                                       = W (sin α + µ cos α) ...( ∵ µ = tan φ)

2.  Considering the motion of the body down the plane

Neglecting friction, the effort required for the motion down the plane will be same as for the
motion up the plane, i.e.

0

sin

sin ( )

W
P

α=
θ − α ...(iii)

(a) (b) (c)

Fig. 10.9. Motion of the body down the plane, considering friction.

When the friction is taken into account, the force of friction F = µ.RN will act up the plane and
the resultant reaction R will make an angle φ with RN towards its right as shown in Fig. 10.9 (a). The
triangle of forces is shown in Fig. 10.9 (b). Now from sine rule,

sin ( ) sin[ ( )]

P W=
α − φ θ − α − φ

or                
sin ( )

sin[ ( )]

W
P

α − φ=
θ − α − φ ...(iv)
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Notes : 1. The value of P may also be obtained either by applying Lami’s theorem to Fig. 10.9 (c), or by
resolving the forces along the plane and perpendicular to the plane and then using ΣH = 0 and ΣV  = 0 (See Art.
10.18 and 10.19).

2. When P is applied horizontally, then θ = 90º. In that case, equation (iv) may be written as

                              
sin ( ) sin ( )

sin[90º ( )] cos ( – )

W W
P

α − φ α − φ= =
− α − φ α φ = W tan (α – φ))

3. When P is applied parallel to the plane, then θ = 90° + α. In that case, equation (iv) may be
written as

                              
sin ( ) sin ( )

sin[90º ) ( )] cos

W W
P

α − φ α − φ= =
+ α − α − φ φ

                                  
(sin cos cos sin )

(sin tan cos )
cos

W
W

α φ − α φ= = α − φ α
φ

                                   = W (sin α – µ cos α) ...(∵ tan φ = µ)

10.15. Efficiency of Inclined Plane

The ratio of the effort required neglecting friction (i.e. P0) to the effort required considering
friction (i.e. P) is known as efficiency of the inclined plane. Mathematically, efficiency of the inclined
plane,

                            0 /P Pη =

Let us consider the following two cases :

1. For the motion of the body up the plane

 Efficiency,        0 sin sin[ ( )]

sin ( ) sin ( )

P W

P W

α θ − α + φη = = ×
θ − α α + φ

                             
sin sin cos ( ) cos sin ( )

sin cos cos sin sin ( )

α θ α + φ − θ α + φ= ×
θ α − θ α α + φ

Multiplying the numerator and denominator by sin (α + φ) sin θ, we get

                            
cot ( ) cot

cot cot

α + φ − θη =
α − θ

Notes : 1. When effort is applied horizontally, then θ = 90°.

∴                            
tan

tan ( )

αη =
α + φ

2. When effort is applied parallel to the plane, then θ = 90º + α.

∴                           
cot ( ) cot (90º ) cot ( ) tan sin cos

cot cot (90º ) cot tan sin ( )

α + φ − + α α + φ + α α φη = = =
α − + α α + α α + φ

2.  For the motion of the body down the plane
Since the value of P will be less than P0, for the motion of the body down the plane, therefore

in this case,

                            
0

sin ( ) sin ( )

sin[ ( )] sin

P W

P W

α − φ θ − αη = = ×
θ − α − φ α

               
sin ( ) sin cos cos sin

sin cos ( ) cos sin ( ) sin

α − φ θ α − θ α= ×
θ α − φ − θ α − φ α
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Multiplying the numerator and denominator by sin (α – φ) sin θ, we get

              
cot cot

cot ( ) cot

α − θη =
α − φ − θ

Notes : 1. When effort is applied horizontally, then θ = 90º.

∴               
cot tan ( )

cot ( ) tan

α α − φη = =
α − φ α

2. When effort is applied parallel to the plane, then θ = 90º + α.

∴               
cot cot (90º ) cot tan sin ( )

cot ( ) cot (90º ) cot ( ) tan sin cos

α − + α α + α α − φη = = =
α − φ − + α α − φ + α α φ

Example 10.2. An effort of 1500 N is required to just move a certain body up an inclined
plane of angle 12º, force acting parallel to the plane. If the angle of inclination is increased to 15º,
then the effort required is 1720 N. Find the weight of the body and the coefficient of friction.

Solution. Given : P1 = 1500 N ; α1 = 12º ; α2 = 15º ; P2 = 1720 N

Let        W = Weight of the body in newtons, and

      µ = Coefficient of friction.

(a) (b)

Fig. 10.10

First of all, let us consider a body lying on a plane inclined at an angle of 12º with the
horizontal and subjected to an effort of 1500 N parallel to the plane as shown in Fig. 10.10 (a).

Let        RN1
 = Normal reaction, and

         F1 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to
the plane (P1),

                        1500 = W (sin α1 + µ cos α1) = W  (sin 12º + µ cos 12º) ...(i)

Now let us consider the body lying on a plane inclined at an angle of 15º with the horizontal
and subjected to an effort of 1720 N parallel to the plane as shown in Fig. 10.10 (b).

Let                      RN2 
= Normal reaction, and

         F2 = Force of friction.

We know that for the motion of the body up the inclined plane, the effort applied parallel to
the plane (P2),

                         1720 = W (sin α2 + µ cos α2) = W (sin 15º + µ cos 15º) ...(ii)

Coefficient of friction

Dividing equation (ii) by equation (i),

                        
1720 (sin 15º cos 15º )

1500 (sin 12º cos 12º )

W

W

+ µ=
+ µ
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1720 sin 12º + 1720 µ cos 12º = 1500 sin 15º + 1500 µ cos 15º

µ (1720 cos 12º – 1500 cos 15º) = 1500 sin 15º – 1720 sin 12º

∴ 1500 sin 15º 1720 sin 12º 1500 0.2588 1720 0.2079

1720 cos 12º 1500 cos 15º 1720 0.9781 1500 0.9659

− × − ×µ = =
− × − ×

    
388.2 357.6 30.6

0.131
1682.3 1448.5 233.8

−= = =
−

Ans.

Weight of the body

Substituting the value of µ in equation (i),

      1500 = W (sin 12º + 0.131 cos 12º)

         = W (0.2079 + 0.131 × 0.9781) = 0.336 W

∴       W = 1500/0.336 = 4464 N Ans.

10.16. Screw Friction
The screws, bolts, studs, nuts etc. are widely used in various machines and structures for

temporary fastenings. These fastenings have screw threads, which are made by cutting a continuous
helical groove on a cylindrical surface. If the threads are cut on the outer surface of a solid rod, these
are known as external threads. But if the threads are cut on the internal surface of a hollow rod, these
are known as internal threads. The screw threads are mainly of two types i.e. V-threads and square
threads. The V-threads are stronger and offer more frictional resistance to motion than square threads.
Moreover, the V-threads have an advantage of preventing the nut from slackening. In general, the V-
threads are used for the purpose of tightening pieces together e.g. bolts and nuts etc. But the square
threads are used in screw jacks, vice screws etc. The following terms are important for the study of
screw :

1.  Helix. It is the curve traced by a particle, while describing a circular path at a uniform
speed and advancing in the axial direction at a uniform rate. In other words, it is the curve traced by
a particle while moving along a screw thread.

Jet engine used in Jet aircraft.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread,
measured parallel to the axis of the screw.

3.  Lead. It is the distance, a screw thread advances axially in one turn.

4.  Depth of thread. It is the distance between the top and bottom surfaces of a thread (also
known as crest and root of a thread).

5.  Single-threaded screw. If the lead of a screw is equal to its pitch, it is known as single
threaded screw.

6.  Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is
known as multi-threaded screw e.g. in a double threaded screw, two threads are cut in one lead length.
In such cases, all the threads run independently along the length of the rod. Mathematically,

                          Lead = Pitch × Number of threads

7. Helix angle. It is the slope or inclination of the thread with
the horizontal. Mathematically,

                        
Lead of screw

tan
Circumference of screw

α =

                = p/πd           ...(In single-threaded screw)

                 = n.p/πd          ...(In multi-threaded screw)

where             α = Helix angle,

            p = Pitch of the screw,

                                d = Mean diameter of the screw, and

                               n  = Number of threads in one lead.

10.17. Screw Jack

The screw jack is a device, for lifting heavy loads, by apply-
ing a comparatively smaller effort at its handle. The principle, on
which a screw jack works is similar to that of an inclined plane.

(a) Screw jack. (b) Thrust collar.

Fig. 10.11

Screw Jack.



Chapter 10 : Friction   �  271
Fig. 10.11 (a) shows a common form of a screw jack, which consists of a square threaded rod

(also called screw rod or simply screw) which fits into the inner threads of the nut. The load, to be
raised or lowered, is placed on the head of the square threaded rod which is rotated by the application
of an effort at the end of the lever for lifting or lowering the load.

10.18. Torque Required to Lift the Load by a Screw Jack

If one complete turn of a screw thread by imagined to be unwound, from the body of the
screw and developed, it will form an inclined plane as shown in Fig. 10.12 (a).

 (a) Development of a screw. (b) Forces acting on the screw.

Fig. 10.12

Let p = Pitch of the screw,

d = Mean diameter of the screw,

α = Helix angle,

P = Effort applied at the circumference of the screw to lift the
load,

W = Load to be lifted, and

µ = Coefficient of friction, between the screw and nut = tan φ,
where φ is the friction angle.

From the geometry of the Fig. 10.12 (a), we find that

tan α = p/π d

Since the principle on which a screw jack works is similar to that of an inclined plane, there-
fore the force applied on the lever of a screw jack may be considered to be horizontal as shown in Fig.
10.12 (b).

Since the load is being lifted, therefore the force of friction (F = µ.RN) will act downwards.
All the forces acting on the screw are shown in Fig. 10.12 (b).

Resolving the forces along the plane,

P cos α = W sin α + F = W sin α + µ.RN ...(i)

and resolving the forces perpendicular to the plane,

RN = P sin α + W cos α ...(ii)

Substituting this value of RN in equation (i),

P cos α = W sin α + µ (P sin α + W  cos α)

= W sin α + µ P sin α + µ W  cos α
or P cos α – µ P sin α = W sin α + µ W cos α
or P (cos α – µ sin α) = W (sin α + µ cos α)
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∴
sin cos

cos sin
P W

α + µ α= ×
α − µ α

Substituting the value of µ = tan φ in the above equation, we get

sin tan cos

cos tan sin
P W

α + φ α= ×
α − φ α

Multiplying the numerator and denominator by cos φ,

sin cos sin cos sin ( )

cos cos sin sin cos ( )
P W W

α φ + φ α α + φ= × = ×
α φ − α φ α + φ

tan ( )W= α + φ
∴  Torque required to overcome friction between the screw and nut,

1 tan ( )
2 2

d d
T P W= × = α + φ

When the axial load is taken up by a thrust collar or a flat surface, as shown in Fig. 10.11 (b),
so that the load does not rotate with the screw, then the torque required to overcome friction at the
collar,

1 2
2 1 1. . .

2

R R
T W W R

+ = µ = µ  
where R1 and R2 = Outside and inside radii of the collar,

R = Mean radius of the collar, and

µ1 = Coefficient of friction for the collar.

∴  Total torque required to overcome friction (i.e. to rotate the screw),

 1 2 1. .
2

d
T T T P W R= + = × + µ

If an effort P1 is applied at the end of a lever of arm length l, then the total torque required to
overcome friction must be equal to the torque applied at the end of the lever, i.e.

1.
2

d
T P P l= × =

Notes : 1. When the *nominal diameter (d0) and the **core diameter (dc) of the screw thread is given, then the
mean diameter of the screw,

                                               
0

02 2 2
c

c

d d p p
d d d

+
= = − = +

2. Since the mechanical advantage is the ratio of load lifted (W ) to the effort applied (P1) at the end of
the lever, therefore mechanical advantage,

                                           
1

2
. .

.

W W l
M A

P p d

×= = ... 1

.

2

P d
P

l
 =  
�

                                                    
2 2

tan ( ) .tan ( )

W l l

W d d

×= =
α + φ α + φ

Example 10.3. An electric motor driven power screw moves a nut in a horizontal plane
against a force of 75 kN at a speed of 300 mm/min. The screw has a single square thread of 6 mm
pitch on a major diameter of 40 mm. The coefficient of friction at the screw threads is 0.1. Estimate
power of the motor.

* The nominal diameter of a screw thread is also known as outside diameter or major diameter.
** The core diameter of a screw thread is also known as inner diameter or root diameter or minor diameter.
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Solution. Given : W = 75 kN = 75 × 103 N ; v = 300 mm/min ; p = 6 mm ; d0 = 40 mm ;

µ = tan φ = 0.1

We know that mean diameter of the screw,

d = d0 – p/2 = 40 – 6/2 = 37 mm = 0.037 m

and                                     
6

tan 0.0516
37

p

d
α = = =

π π ×

∴  Force required at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                                
3 30.0516 0.1

75 10 11.43 10 N
1 0.0516 0.1

+ = × = × − × 

and torque required to overcome friction,

T = P × d/2 = 11.43 × 103 × 0.037/2 = 211.45 N-m

We know that speed of the screw,

Speed of the nut 300
50 r.p.m.

Pitch of the screw 6
N = = =

and angular speed,        ω = 2 π × 50/60 = 5.24 rad/s

∴  Power of the motor = T.ω = 211.45 × 5.24 = 1108 W = 1.108 kW Ans.

Example 10.4. A turnbuckle, with right
and left hand single start threads, is used to couple
two wagons. Its thread pitch is 12 mm and mean
diameter 40 mm. The coefficient of friction between
the nut and screw is 0.16.

1. Determine the work done in drawing the
wagons together a distance of 240 mm, against a
steady load of 2500 N.

2. If the load increases from 2500 N to 6000
N over the distance of 240 mm, what is the work to
be done?

Solution. Given : p = 12 mm ; d = 40 mm ;
µ = tan φ = 0.16 ; W = 2500 N

1.  Work done in drawing the wagons together against a steady load of 2500 N

We know that               
12

tan 0.0955
40

p

d
α = = =

π π ×
∴  Effort required at the circumference of the screw,

  
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

Turnbuckle.
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0.0955 0.16

2500 648.7 N
1 0.0955 0.16

+ = = − × 
and torque required to overcome friction between the screw and nut,

                                            / 2 648.7 40 / 2 12 947 N-mm 12.974 N-mT P d= × = × = =
A little consideration will show that for one complete revolution of the screwed rod, the

wagons are drawn together through a distance equal to 2 p, i.e. 2 × 12 = 24 mm. Therefore in order to
draw the wagons together through a distance of 240 mm, the number of turns required are given by

N = 240/24 = 10

∴ Work done = T × 2 π N = 12.974 × 2 π × 10 = 815.36  N-m  Ans.

2.  Work done in drawing the wagons together when load increases from 2500 N to 6000 N

For an increase in load from 2500 N to 6000 N,

                              
815.3(6000 2500)

Work done = 114.4 N-m
2500

− = Ans.

Example 10.5. A 150 mm diameter valve, against which a steam pressure of 2 MN/m2 is
acting, is closed by means of a square threaded screw 50 mm in external diameter with 6 mm pitch.
If the coefficient of friction is 0.12 ; find the torque required to turn the handle.

Solution. Given : D = 150 mm = 0.15 mm = 0.15 m ;  Ps = 2 MN/m2 = 2 × 106 N/m2 ;
d0 = 50 mm ; p = 6 mm ; µ = tan φ = 0.12

We know that load on the valve,

W = Pressure × Area = 2 6 2
S 2 10 (0.15) N

4 4
p D

π π× = × ×

= 35 400 N

Mean diameter of the screw,

d = d0 – p/2 = 50 – 6/2 = 47 mm = 0.047 m

∴                                   
6

tan 0.0406
47

p

d
α = = =

π π ×
We know that force required to turn the handle,

                                            
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                                
0.0406 12

35400 5713 N
1 0.0406 0.12

+ = = − × 
∴   Torque required to turn the handle,

T = P × d/2 = 5713 × 0.047/2 = 134.2 N-m  Ans.

Example 10.6. A square threaded bolt of root diameter 22.5 mm and pitch 5 mm is tightened
by screwing a nut whose mean diameter of bearing surface is 50 mm. If coefficient of friction for nut
and bolt is 0.1 and for nut and bearing surface 0.16, find the force required at the end of a spanner
500 mm long when the load on the bolt is 10 kN.

Solution. Given : dc = 22.5 mm ; p = 5 mm ;  D = 50 mm or R = 25 mm ; µ = tan φ = 0.1 ;
µ1 = 0.16 ; l = 500 mm ; W  = 10 kN = 10 × 103 N

Let P1 = Force required at the end of a spanner in newtons.
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We know that mean diameter of the screw,

                                            / 2 22.5 5 / 2 25 mmcd d p= + = + =

∴                                  
5

tan 0.0636
25

p

d
α = = =

π π ×

Force requred at the circumference of the screw,

                                            
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                                
3 0.0636 0.1

10 10 1646 N
1 0.06363 0.1

+ = × = − × 
We know that total torque required,

                                            3
1

25
. . . 1646 0.16 10 10 25

2 2

d
T P W R= × + µ = × + × × ×

 60575 N - mm= ..(i)

We also know that torque required at the end of a spanner,

T = P1 × l = P1 × 500 = 500 P1 N-mm ...(ii)

Equating equations (i) and (ii),

P1 = 60575/500 = 121.15 N  Ans.

Example 10.7. A vertical screw with single start square threads 50 mm mean diameter and
12.5 mm pitch is raised against a load of 10 kN by means of a hand wheel, the boss of which is
threaded to act as a nut. The axial load is taken up by a thrust collar which supports the wheel boss
and has a mean diameter of 60 mm. If the coefficient of friction is 0.15 for the screw and 0.18 for the
collar and the tangential force applied by each hand to the wheel is 100 N ; find suitable diameter of
the hand wheel.

Solution. Given : d = 50 mm ; p = 12.5 mm ; W = 10 kN = 10 × 103 N ; D = 60 mm or
R = 30 mm ; µ = tan φ = 0.15 ; µ1 = 0.18 ; P1 = 100 N

We know that   
12.5

tan 0.08
50

p

d
α = = =

π π ×
and the tangential force required at the circumference of the screw,

                             
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                    
3 0.08 0.15

10 10 2328 N
1 0.08 0.15

+ = × = − × 
Also we know that the total torque required to turn the hand wheel,

                               3
1

50
. . 2328 0.18 10 10 30

2 2

d
T P W R= × + µ = × + × × ×

                                    112200 N-mm= ...(i)
Let D1 = Diameter of the hand wheel in mm.
We know that the torque applied to the hand wheel,

                                1 1
1 12 2 100 100 N-mm

2 2

D D
T P D= × = × × = ...(ii)
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Equating equations (i) and (ii),

                                D1 = 112 200/100 = 1222 mm = 1.222 m Ans.

Example 10.8. The cutter of a broaching machine is pulled by square threaded screw of 55
mm external diameter and 10 mm pitch. The operating nut takes the axial load of 400 N on a flat
surface of 60 mm internal diameter and 90 mm external diameter. If the coefficient of firction is 0.15
for all contact surfaces on the nut, determine the power required to rotate the operating nut, when
the cutting speed is 6 m/min.

Solution. Given : d0 = 55 mm ; p = 10 mm = 0.01 m ; W  = 400 N ; D2 = 60 mm   or
R2 = 30 mm ; D1 = 90 mm or R1 = 45 mm ; µ = tan φ = µ1 = 0.15

We know that mean diameter of the screw,
                                  d = d0 – p/2 = 55 – 10/2 = 50 mm

∴                       
10

tan 0.0637
50

p

d
α = = =

π π ×
and force required at the circumference of the screw,

                                
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                    
0.0637 0.15

400 86.4 N
1 0.0637 0.15

+ = = − × 
We know that mean radius of the flat surface,

                                1 2 45 30
37.5 mm

2 2

R R
R

+ += = =

∴  Total torque required,

                                            1

50
. . 86.4 0.15 400 37.5 N-mm

2 2

d
T P W R= × + µ = × + × ×

              4410 N-mm 4.41 N-m= = ...(∵ µ1 = µ)

Since the cutting speed is 6 m/min, therefore speed of the screw,

            
Cutting speed 6

600 r.p.m.
Pitch 0.01

N = = =

and                angular speed, ω = 2 π × 600/60 = 62.84 rad/s

We know that power required to operate the nut

            . 4.41 62.84 277 W 0.277 kWT= ω = × = = Ans.

10.19. Torque Required to Lower the Load by a Screw Jack

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar
to that of an inclined plane. If one complete turn of a screw thread be imagined to be unwound from
the body of the screw and developed, it will form an inclined plane as shown in Fig. 10.13 (a).

Let p = Pitch of the screw,

d = Mean diameter of the screw,
α = Helix angle,

P = Effort applied at the circumference of the screw to lower the
load,
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W = Weight to be lowered, and

µ = Coefficient of friction between the screw and nut = tan φ,
where φ is the friction angle.

(a) (b)

Fig. 10.13

From the geometry of the figure, we find that
tan α = p/πd

Since the load is being lowered, therefore the force of friction (F = µ.RN) will act upwards.
All the forces acting on the screw are shown in Fig. 10.13  (b).

Resolving the forces along the plane,
P cos α = F – W  sin α = µ.RN – W  sin α ...(i)

and resolving the forces perpendicular to the plane,
RN = W cos α – P sin α ...(ii)

Substituting this value of RN in equation (i),
P cos α = µ (W cos α – P sin α) – W sin α

= µ.W  cos α – µ.P sin α – W  sin α
or P cos α + µ.P sin α = µ.W cos α – W sin α
or P (cos α + µ sin α) = W (µ cos α – sin α)

∴                                        
( cos sin )

(cos sin )
P W

µ α − α= ×
α + µ α

Substituting the value of µ = tan φ in the above equation, we get

                                           
(tan cos sin )

(cos tan sin )
P W

φ α − α= ×
α + φ α

Multiplying the numerator and denominator by cos φ,

                                           
(sin cos sin cos ) sin ( )

(cos cos sin sin ) cos ( )
P W W

φ α − α φ φ − α= × = ×
α φ + φ α φ − α

                                              tan ( )W= φ − α
∴ Torque required to overcome friction between the screw and nut,

tan ( )
2 2

d d
T P W= × = φ − α

Note : When α > φ, then P = tan (α – φ).

Example 10.9. The  mean diameter of a square threaded screw jack is 50 mm. The pitch of
the thread is 10 mm. The coefficient of friction is 0.15. What force must be applied at the end of a
0.7 m long lever, which is perpendicular to the longitudinal axis of the screw to raise a load of 20 kN
and to lower it?
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Solution. Given : d = 50 mm = 0.05 m ; p = 10 mm ; µ = tan φ = 0.15 ; l = 0.7 m ; W = 20 kN
= 20 × 103 N

We know that        
10

tan 0.0637
50

p

d
α = = =

π π ×
Let P1 = Force required at the end of the lever.

Force required to raise the load

We know that force required at the circumference of the screw,

                                           
tan tan

tan ( )
1 tan .tan

P W W
α + φ = α + φ =  − α φ 

                                               
3 0.0637 0.15

20 10 4314 N
1 0.0637 0.15

+ = × = − × 
Now the force required at the end of the lever may be found out by the relation,

P1 × l = P × d/2

∴ 1

4314 0.05
154 N

2 2 0.7

P d
P

l

× ×= = =
×

Ans.

Force required to lower the load

We know that the force required at the circumference of the screw,

tan tan
tan ( )

1 tan .tan
P W W

φ − α = φ − α =  + φ α 

3 0.15 0.0637
20 10 1710 N

1 0.15 0.0637

− = × = + × 
Now the force required at the end of the lever may be found out by the relation,

                                     
1 1

1710 0.05
or 61 N

2 2 2 0.7

d P d
P l P P

l

× ×× = × = = =
×

Ans.

10.20. Efficiency of a Screw Jack

The efficiency of a screw jack may be defined as the ratio between the ideal effort (i.e. the
effort required to move the load, neglecting friction) to the actual effort (i.e. the effort required to
move the load taking friction into account).

We know that the effort required to lift the load (W ) when friction is taken into account,

P = W tan (α + φ) ...(i)
where α = Helix angle,

φ = Angle of friction, and

µ = Coefficient of friction, between the screw and nut = tan φ.
If there would have been no friction between the screw and the nut, then φ will be equal to

zero. The value of effort P0 necessary to raise the load, will then be given by the equation,

P0 = W tan α (i.e. Putting φ = 0 in equation (i)]

                       
0Ideal effort tan tan

Efficiency,
Actual effort tan ( ) tan ( )

P W

P W

α α∴ η = = = =
α + φ α + φ

which shows that the efficiency of a screw jack, is independent of the load raised.
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In the above expression for efficiency, only the screw friction is considered. However, if the

screw friction and the collar friction is taken into account, then

∴                   
Torque required to move the load, neglecting friction

Torque required to move the load, including screw and collar friction
η =

                         
0 0

1

/ 2

/ 2 . .

T P d

T P d W R

×
= =

× + µ
Note: The efficiency of the screw jack may also be defined as the ratio of mechanical advantage to the
velocity ratio.

We know that mechanical advantage,

                  
1

2 2 2
. .

tan ( ) tan ( )

W W l W l l
M A

P P d W d d

× ×= = = =
× α + φ α + φ ...(Refer Art 10.17)

and velocity ratio,   
1Distance moved by the effort ( ), in one revolution

. .
Distance moved by the load ( ), in one revolution

P
V R

W
=

                           
2 2 2

tan tan

l l l

p d d

π π= = =
α × π α × ...(� tan α = p/πd)

∴   Efficiency,  
. . 2 tan tan

. . tan ( ) 2 tan ( )

M A l d

V R d l

α× × αη = = × =
α + φ α + φ

10.21. Maximum Efficiency of a Screw Jack

We have seen in Art. 10.20 that the efficiency of a screw jack,

sin

tan sin cos ( )cos
sin ( )tan ( ) cos sin ( )
cos ( )

α
α α × α + φαη = = =

α + φα + θ α × α +φ
α + φ

...(i)

    
2 sin cos ( )

2 cos sin ( )

α × α + φ=
α × α + φ

...(Multiplying the numerator and denominator by 2)

sin (2 ) sin

sin (2 ) sin

α + φ − φ=
α + φ + φ ...(ii)

2 sin cos sin ( ) sin ( )
...

2 cos sin sin ( ) sin ( )

A B A B A B

A B A B A B

= + + − 
 = + − − 

�

The efficiency given by equation (ii) is maximum when sin (2α + φ) is maximum, i.e. when

sin (2α + φ) = 1    or   when 2α + φ = 90°

∴ 2α = 90º – φ    or    α = 45º – φ / 2

Substituting the value of 2 α in equation (ii), we have maximum efficiency,

                                     
sin (90º ) sin sin 90º sin 1 sin

sin (90º ) sin sin 90º sin 1 sinmax

− φ + φ − φ − φ − φη = = =
− φ + φ + φ + φ + φ

Example 10.10. The pitch of 50 mm mean diameter threaded screw of a screw jack is 12.5
mm.  The coefficient of friction between the screw and the nut is 0.13. Determine the torque required
on the screw to raise a load of 25 kN, assuming the load to rotate with the screw. Determine the ratio
of the torque required to raise the load to the torque required to lower the load and also the efficiency
of the machine.
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Solution. Given : d = 50 mm ; p = 12.5 mm ; µ = tan φ = 0.13 ; W = 25 kN = 25 × 103 N

We know that,         
12.5

tan 0.08
50

p

d
α = = =

π π ×
and force required on the screw to raise the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = α + φ =  + φ α 

                                          
3 0.08 0.13

25 10 5305 N
1 0.08 0.13

+ = × = − × 
Torque required on the screw

We know that the torque required on the screw to raise the load,
                                   T1 = P × d/2 = 5305 × 50/2 = 132 625 N-mm Ans.

Ratio of the torques required to raise and lower the load
We know that the force required on the screw to lower the load,

                                      
tan tan

tan ( )
1 tan .tan

P W W
φ − α = φ − α =  + φ α 

                                          
3 0.13 0.08

25 10 1237 N
1 0.13 0.08

+ = × = + × 
and torque required to lower the load
                                                T2 = P × d/2 = 1237 × 50/2 = 30 905 N-mm

∴   Ratio of the torques required,

                                        1 2/ 132625 / 30925 4.3T T= = = Ans.

Efficiency of the machine

We know that the efficiency,

                                          
tan tan (1 tan .tan ) 0.08(1 0.08 0.13)

tan ( ) tan tan 0.08 0.13

α α − α φ − ×η = = =
α + φ α + φ +

                                          = 0.377 = 37.7%  Ans.

Example 10.11.  The mean diameter of the screw jack having pitch of 10 mm is 50 mm. A
load of 20 kN is lifted through a distance of 170 mm. Find the work done in lifting the load and
efficiency of the screw jack when

1.  the load rotates with the screw, and

2.  the load rests on the loose head which does not rotate with the screw.

The external and internal diameter of the bearing surface of the loose head are 60 mm and
10 mm respectively. The coefficient of friction for the screw as well as the bearing surface may be
taken as 0.08.

Solution.  Given : p = 10 mm ; d = 50 mm ; W  = 20 kN = 20 × 103 N ; D2 = 60 mm or
R2 = 30 mm ; D1 = 10 mm or R1 = 5 mm ; µ = tan φ = µ1 = 0.08

We know that          
10

tan 0.0637
50

p

d
α = = =

π π ×
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∴   Force required at the circumference of the screw to lift the load,

tan tan
tan ( )

1 tan . tan
P W W

α + φ = α + φ =  − α φ 

3 0.0637 0.08
20 10 2890 N

1 0.0637 0.08

+ = × = − × 
and torque required to overcome friction at the screw,

                              / 2 2890 50 / 2 72250 N-mm 72.25 N-mT P d= × = × = =
Since the load is lifted through a vertical distance of 170 mm and the distance moved by the

screw in one rotation is 10 mm (equal to pitch), therefore number of rotations made by the screw,

N = 170/10 = 17

1.  When the load rotates with the screw
We know that work done in lifting the load

                                    2 72.25 2 17 7718 N-mT N= × π = × π × = Ans.

and efficiency of the screw jack,

                                
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φη = =
α + φ α + α

                                    0.0637(1 0.0637 0.08)
0.441 or 44.1%

0.0637 0.08

− ×= =
+

Ans.

2.  When the load does not rotate with the screw

We know that mean radius of the bearing surface,

                              1 2 30 5
17.5 mm

2 2

R R
R

+ +
= = =

and torque required to overcome friction at the screw and the collar,

1
3

/ 2 . .

2890 50 / 2 0.08 20 10 17.5 100 250 N-mm
= 100.25 N-m

T P d W R= × + µ
= × + × × × =

∴  Work done by the torque in lifting the load

                                   2 100.25 2 17 10 710 N-mT N= × π = × π × = Ans.

We know that the torque required to lift the load, neglecting friction,

0 0 / 2 tan / 2T P d W d= × = α × ...(�P0 = W tan α)

= 20 × 103 × 0.0637 × 50/2 = 31 850 N-mm = 31.85 N-m
∴   Efficiency of the screw jack,

0 / 31.85 /100.25 0.318 or 31.8%T Tη = = = Ans.

10.22. Over Hauling and Self Locking Screws

We have seen in Art. 10.20 that the effort required at the circumference of the screw to lower
the load is

P = W tan (φ – α)
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and the torque required to lower the load

tan ( )
2 2

d d
T P W= × = φ− α

In the above expression, if φ < α, then torque required to lower the load will be negative. In
other words, the load will start moving downward without the application of any torque. Such a
condition is known as over haulding of screws. If however, φ > α, the torque required to lower the
load will positive, indicating that an effort is applied to lower the load. Such a screw is known as self
locking screw. In other words, a screw will be self locking if the friction angle is greater than helix
angle or coefficient of friction is greater than tangent of helix angle i.e. µ or tan φ > tan α.

10.23. Efficiency of Self Locking Screws

We know that efficiency of the screw,

tan

tan ( )

αη =
α + φ

and for self locking screws,  or .φ ≥ α α ≤ φ

∴  Efficiency of self locking screws,

                                            
2tan tan tan (1 tan )

tan ( ) tan 2 2 tan

φ φ φ − φη ≤ ≤ ≤
φ + φ φ φ

 
21 tan

2 2

φ≤ − 2

2 tan
tan 2...

1 tan

φ φ = − φ 
�

From this expression we see that efficiency of self locking screws is less than 
1

2
 or 50%. If

the efficiency is more than 50%, then the screw is said to be overhauling,

Note : It can also be proved as follows :
Let W = Load to be lifted, and

h = Distance through which the load is lifted.
∴ Output = W.h

and                                           Input = 
Output .W h

=
η η

∴  Work lost in over coming friction.

                                                    
1.

1Input Output . .
W h

W h W h
 −= − = − =  ηη  

For self locking,,  
1

1. .W h W h
 − ≤ η 

∴                                       
1 1

1 1 or or 50%
2

− ≤ η ≤
η

Example 10.12. A load of 10 kN is raised by means of a screw jack, having a square threaded
screw of 12 mm pitch and of mean diameter 50 mm. If a force of 100 N is applied at the end of a lever
to raise the load, what should be the length of the lever used? Take coefficient of friction = 0.15.
What is the mechanical advantage obtained? State whether the screw is self locking.

Solution.  Given : W = 10 kN = 10 × 103 N ; p = 12 mm ; d = 50 mm ; P1 = 100 N ;
µ = tan φ = 0.15

Length of the lever

Let l = Length of the lever.
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We know that       
12

tan 0.0764
50

p

d
α = = =

π π ×
∴  Effort required at the circumference of the screw to raise the load,

                                 
tan tan

tan ( )
1 tan . tan

P W W
α + φ = α + φ =  − α φ 

                                     3 0.0764 0.15
10 10 2290

1 0.0764 0.15

+ = × = − × 
N

and torque required to overcome friction,

                                    T = P × d/2 = 2290 × 50/2 = 57 250 N-mm ...(i)

We know that torque applied at the end of the lever,

                                   T = P1 × l = 100 × l N-mm ...(ii)

Equating equations (i) and (ii)

                                     l = 57 250/100 = 572.5 mm  Ans.

Mechanical advantage

We know that mechanical advantage,

                             
3

1

10 10
. . 100

100

W
M A

P

×= = = Ans.

Self locking of the screw

We know that efficiency of the screw jack,

                                   
tan tan (1 tan .tan )

tan ( ) tan tan

α α − α φη = =
α + φ α + φ

                                       
0.0764(1 0.0764 0.15) 0.0755

0.3335 or 33.35%
0.0764 0.15 0.2264

− ×= = =
+

Since the efficiency of the screw jack is less than 50%, therefore the screw is a self locking
screw. Ans.

10.24. Friction of a V-thread

We have seen Art. 10.18 that the normal reaction in case of a square threaded screw is

                                 RN = W cos α, where α = Helix angle.

But in case of  V-thread (or acme or trapezoidal threads), the normal
reaction between the screw and nut is increased because the axial component of
this normal reaction must be equal to the axial load W , as shown in Fig. 10.14.

Let                             2β = Angle of the V-thread, and

                                   β  = Semi-angle of the V-thread.

∴                             N cos

W
R =

β

and                frictional force, N 1. .
cos

W
F R W= µ = µ × = µ

β

where                                      1,
cos

µ = µ
β  known as virtual coefficient of friction.

Fig. 10.14. V-thread.



284  �   Theory of Machines

Notes : 1. When coefficient of friction, 1 cos

µµ =
β

 is considered, then the V-thread is equivalent to a square

thread.
2. All the equations of square threaded screw also hold good for V-threads. In case of V-threads, µ1

(i.e. tan φ1) may be substituted in place of µ (i.e. tan φ). Thus for V-threads,

1tan ( )P W= α ± φ

where   φ1 = Virtual friction angle, such that tan φ1 = µ1.

Example 10.13. Two co-axial rods are connected by a turn buckle which consists of a box
nut, the one screw being right handed and the other left handed on a pitch diameter of 22 mm, the
pitch of thread being 3 mm. The included angle of the thread is 60º. Assuming that the rods do not
turn, calculate the torque required on the nut to produce a pull of 40 kN, given that the coefficient of
friction is 0.15.

Solution. Given : d = 22 mm ; p = 3 mm ; 2 β = 60º or β = 30º, W = 40 kN = 40 × 103 N ; µ = 0.15

We know that         
3

tan 0.0434
22

p

d
α = = =

π π ×
and virtual coefficient of friction

                                           1 1

0.15
tan 0.173

cos cos 30º

µµ = φ = = =
β

We know that the force required at the circumference of the screw,

              
1

1
1

tan tan
tan ( )

1 tan .tan
P W W

α + φ 
= α + φ =  − α φ 

3 0.0434 0.173
40 10 8720 N

1 0.0434 0.173

+ = × = − × 
and torque on one rod,  T = P × d/2 = 8720 × 22/2 = 95 920 N-mm = 95.92 N-m

Since the turn buckle has right and left hand threads and the torque on each rod is T = 95.92
N-m, therefore the torque required on the nut,

T1 = 2T = 2 × 95.92 = 191.84 N-m Ans.

Example 10.14. The mean diameter of a Whitworth bolt having V-threads is 25 mm. The
pitch of the thread is 5 mm and the angle of V is 55º. The bolt is tightened by screwing a nut whose
mean radius of the bearing surface is 25 mm. If the coefficient of friction for nut and bolt is 0.1 and
for nut and bearing surfaces 0.16 ; find the force required at the end of a spanner 0.5 m long when
the load on the bolt is 10 kN.

Solution. Given : d = 25 mm ; p = 5 mm ; 2 β = 55º   or   β = 27.5º ; R = 25 mm ; µ = tan φ
= 0.1; µ2 = 0.16 ; l = 0.5 m ; W  = 10 kN = 10 × 103 N

We know that virtual coefficient of friction,

             1 1

0.1 0.1
tan 0.113

cos cos 27.5º 0.887

µµ = φ = = =
β

and        
5

tan 0.064
25

p

d
α = = =

π π ×
∴  Force on the screw,

                                            
1

1
1

tan tan
tan ( )

1 tan .tan
P W W

α + φ 
= α + φ =  − α φ 
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3 0.064 0.113

10 10 1783 N
1 0.064 0.113

+ = × = − × 
We know that total torque transmitted,

                          3
2

25
. . 1783 0.16 10 10 25 N-mm

2 2

d
T P W R= × + µ = × + × × ×

 62 300 N-mm 62.3 N-m= = ...(i)
Let P1 = Force required at the end of a spanner.
∴   Torque required at the end of a spanner,

 T = P1 × l = P1 × 0.5 = 0.5 P1 N-m ...(ii)
Equating equations (i) and (ii),

P1 = 62.3/0.5 = 124.6 N  Ans.

10.25. Friction in Journal Bearing-Friction Circle

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of
a turning pair is called a bearing and that portion of the inner element (i.e. shaft) which fits in the
bearing is called a journal. The journal is slightly less in diameter than the bearing, in order to permit
the free movement of the journal in a bearing.

                    (a)         (b)
Fig. 10.15. Friction in journal bearing.

When the bearing is not lubricated (or the journal is stationary), then there is a line contact
between the two elements as shown in Fig. 10.15 (a). The load W  on the journal and normal reaction
RN (equal to W ) of the bearing acts through the centre. The reaction RN acts vertically upwards at
point A . This point A  is known as seat or point of pressure.

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15
(b). The lubricant between the journal and bearing forms a thin layer which gives rise to a greasy
friction.Therefore, the reaction R does not act vertically upward, but acts at another point of pressure
B. This is due to the fact that when shaft rotates, a frictional force F = µ RN acts at  the circumference
of the shaft which has a tendency to rotate the shaft in opposite direction of motion and this shifts the
point A to point B.

In order that the rotation may be maintained, there must be a couple rotating the shaft.
Let φ = Angle between R (resultant of F and RN) and RN,

µ = Coefficient of friction between the journal and bearing,
T = Frictional torque in N-m, and
r = Radius of the shaft in metres.
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For uniform motion, the resultant force acting on the shaft must be zero and the resultant
turning moment on the shaft must be zero. In other words,

R = W , and T = W × OC = W × OB sin φ = W.r sin φ
Since φ is very small, therefore substituting sin φ = tan φ
∴ T = W.r tan φ = µ.W.r ...(∵ µ = tan φ)

If the shaft rotates with angular velocity ω rad/s, then power wasted in friction,

P = T.ω = T × 2πN/60 watts

where N = Speed of the shaft in r.p.m.

Notes : 1. If a circle is drawn with centre O and radius OC = r sin φ, then this circle is called the friction circle
of a bearing.

2. The force R exerted by one element of a turning pair on the other element acts along a tangent to the
friction circle.

Example 10.15. A 60 mm diameter shaft running in a bearing carries a load of 2000 N. If
the coefficient of friction between the shaft and bearing is 0.03, find the power transmitted when it
runs at 1440 r.p.m.

Solution.  Given : d = 60 mm or r = 30 mm = 0.03 m ; W = 2000 N ; µ = 0.03 ; N = 1440 r.p.m.
or ω = 2π × 1440/60 = 150.8 rad/s

We know that torque transmitted,

T = µ.W.r = 0.03 × 2000 × 0.03 = 1.8 N-m

∴  Power transmitted, P = T.ω = 1.8 × 150.8 = 271.4 W Ans.

10.26. Friction of Pivot and Collar Bearing

The rotating shafts are frequently subjected to axial thrust. The bearing surfaces such as pivot
and collar bearings are used to take this axial thrust of the rotating shaft. The propeller shafts of ships, the
shafts of steam turbines, and vertical machine shafts are examples of shafts which carry an axial thrust.

The bearing surfaces placed at the end of a shaft to take the axial thrust are known as
pivots. The pivot may have a flat surface or conical surface as shown in Fig. 10.16 (a) and (b)
respectively. When the cone is truncated, it is then known as truncated or trapezoidal pivot as
shown in Fig. 10.16 (c).

The collar may have flat bearing surface or conical bearing surface, but the flat surface is
most commonly used. There may be a single collar, as shown in Fig. 10.16 (d) or several collars along
the length of a shaft, as shown in Fig. 10.16 (e) in order to reduce the intensity of pressure.

(a) Flat pivot. (b) Conical pivot. (c) Truncated pivot. (d) Single flat (e) Multiple flat
collar. collar.

Fig. 10.16. Pivot and collar bearings.

In modern practice, ball and roller thrust bearings are used when power is being transmitted
and when thrusts are large as in case of propeller shafts of ships.
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Fig. 10.17. Flat pivot or footstep
bearing.

A little consideration will show that in a new bear-
ing, the contact between the shaft and bearing may be good
over the whole surface. In other words, we can say that the
pressure over the rubbing surfaces is uniformly distributed.
But when the bearing becomes old, all parts of the rubbing
surface will not move with the same velocity, because the
velocity of rubbing surface increases with the distance from
the axis of the bearing. This means that wear may be different
at different radii and this causes to alter the distribution of
pressure. Hence, in the study of friction of bearings, it is as-
sumed that

1.  The pressure is uniformly distributed throughout the bearing surface, and

2.  The wear is uniform throughout the bearing surface.

10.27. Flat Pivot Bearing

When a vertical shaft rotates in a flat pivot bearing
(known as foot step bearing), as shown in Fig. 10.17, the
sliding friction will be along the surface of contact between
the shaft and the bearing.

Let W = Load transmitted over the bearing surface,

R = Radius of bearing surface,

p = Intensity of pressure per unit area of bear-
ing surface between rubbing surfaces, and

µ = Coefficient of friction.

We will consider the following two cases :

1.  When there is a uniform pressure ; and

2.  When there is a uniform wear.

1.  Considering unifrom pressure

When the pressure is uniformly distributed over the bearing area, then

                                              2

W
p

R
=

π
Consider a ring of radius r and thickness dr of the bearing area.

∴  Area of bearing surface,   A = 2πr.dr

Load transmitted to the ring,

                                                       δW   = p × A =  p × 2 π r.dr ...(i)

Frictional resistance to sliding on the ring acting tangentially at radius r,

Fr  = µ.δW  = µ p × 2π r.dr = 2π µ.p.r.dr

∴  Frictional torque on the ring,

     Tr = Fr × r = 2π µ p r.dr × r = 2 π µ p r2 dr ...(ii)

Integrating this equation within the limits from 0 to R for the total frictional torque on the
pivot bearing.

Collar bearing.
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∴   Total frictional torque,  2 2

0 0

2 2
R R

T p r dr p r dr= πµ = πµ∫ ∫

                                        
33

3

0

2
2 2 . .

3 33

R
Rrp p p R

 = πµ = πµ × = × πµ  

                                        
3

2

2 2
. .

3 3

W
R W R

R
= × πµ × × = × µ

π 2
... W

p
R

 = π 
�

When the shaft rotates at ω rad/s, then power lost in friction,

P = T.ω = T × 2π N/60 ...( 2 / 60)Nω = π�

where N = Speed of shaft in r.p.m.

2.  Considering uniform wear
We have already discussed that the rate of wear depends upon the intensity of pressure (p) and

the velocity of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product
of intensity of pressure and the velocity of rubbing surfaces (i.e.  p.v..). Since the velocity of rubbing
surfaces increases with the distance (i.e. radius r) from the axis of the bearing, therefore for uniform
wear

p.r = C (a constant)     or     p = C / r

and the load transmitted to the ring,

δW = p × 2πr.dr ...[From equation (i)]

    2 . 2 .
C

r dr C dr
r

= × π = π

∴ Total load transmitted to the bearing

[ ]0
0

2 . 2 2 . or
2

R
R W

W C dr C C R Cr
R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

 2 22 2r

C
T p r dr r dr

r
= πµ = πµ × × ...

C
p

r
 =  
�

= 2π µ.C.r  dr ...(iii)

∴   Total frictional torque on the bearing,
2

0 0

2 . . . 2 .
2

RR
rT C r dr C

 = π µ = πµ   ∫
2

22 . . .
2

R
C C R= πµ × = πµ

2 1
. .

2 2

W
R W R

R
= πµ × × = × µ

π
...

2

W
C

R
 = π 
�

Example 10.16. A vertical shaft 150 mm in diameter rotating at 100 r.p.m. rests on a flat end
footstep bearing. The shaft carries a vertical load of 20 kN. Assuming uniform pressure distribution
and coefficient of friction equal to 0.05, estimate power lost in friction.

Solution. Given : D = 150 mm or R = 75 mm = 0.075 m ; N = 100 r.p.m or ω = 2 π × 100/60
= 10.47 rad/s ; W = 20 kN = 20 × 103 N ; µ = 0.05
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* The vertical load acting on the ring is also given by

                                   δW  = Vertical component of p
n
 × Area of the ring

                                         =p
n
 sin α × 2πr.dr.cosec α = p

n
 × 2πr.dr

Fig. 10.18.
Conical pivot bearing.

We know that for uniform pressure distribution, the total frictional torque,

                                  
32 2

. . 0.05 20 10 0.075 50 N-m
3 3

T W R= × µ = × × × × =

∴   Power lost in friction,

                                 . 50 10.47 523.5 WP T= ω = × = Ans.

10.28. Conical Pivot Bearing

The conical pivot bearing supporting a shaft carrying a load W  is shown in Fig. 10.18.

Let                                Pn = Intensity of pressure normal to
the cone,

α = Semi angle of the cone,

µ = Coefficient of friction
between the shaft and the
bearing, and

R = Radius of the shaft.

Consider a small ring of radius r and thickness dr. Let dl is
the length of ring along the cone, such that

                                  dl = dr cosec α
∴   Area of the ring,

                                   A = 2πr.dl = 2πr.dr cosec α
...(∵ dl = dr cosec α)

1.  Considering uniform pressure

We know that normal load acting on the ring,

                              δWn = Normal pressure × Area

                                      = pn × 2πr.dr cosec α
and vertical load acting on the ring,

                              *δW  = Vertical component of δWn = δWn.sin α
                                      =pn × 2πr.dr cosec α. sin α = pn × 2π r.dr

∴   Total vertical load transmitted to the bearing,

                                
22

2

0 0

2 . 2 2 .
22

RR

n n n n

RrW p r dr p p R p
 = × π = π = π × = π  ∫

or                                         2/np W R= π

We know that frictional force on the ring acting tangentially at radius r,

  . . .2 . cosec 2 . .cosec . .r n n nF W p r dr p r dr= µ δ = µ π α = πµ α

and frictional torque acting on the ring,

  22 . .cosec . . 2 . cosec . .r r n nT F r p r dr r p r dr= × = πµ α × = πµ α
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Integrating the expression within the limits from 0 to R for the total frictional torque on the
conical pivot bearing.

∴   Total frictional torque,

    
3

2

0 0

2 . cosec . 2 . .cosec
3

RR

n n
rT p r dr p

 = π µ α = πµ α  ∫
3 32

2 . .cosec . .cosec
3 3n n

R R
p p

π= πµ α × = × µ α ...(i)

Substituting the value of pn in equation (i),

    
3

2

2 2
cosec . . . cosec

3 3

R W
T W R

R

π= × π × × α = × µ α
π

Note : If slant length (l ) of the cone is known, then

  
2

. .
3

T W l= × µ ...( cosec )l R= α�

2.  Considering uniform wear

In Fig. 10.18, let pr be the normal intensity of pressure at a distance r from the central axis.
We know that, in case of uniform wear, the intensity of pressure varies inversely with the distance.

∴           pr.r  = C (a constant)    or pr = C/r

and the load transmitted to the ring,

         2 . 2 . 2 .r

C
W p r dr r dr C dr

r
δ = × π = × π = π

∴  Total load transmitted to the bearing,

            [ ]0
0

2 . 2 2 . or
2

R
R W

W C dr C C R Cr
R

= π = π = π =
π∫

We know that frictional torque acting on the ring,

            2 22 . .cosec . . 2 cosec . .r r

C
T p r dr r dr

r
= πµ α = πµ × × α

                 2 . .cosec . .C r dr= πµ α

∴  Total frictional torque acting on the bearing,

2

0 0

2 . .cosec . . 2 . .cosec
2

RR
rT C r dr C

 = π µ α = πµ α  ∫
2

22 . .cosec . .cosec .
2

R
C C R= π µ α × = πµ α

Substituting the value of C, we have

        
2 1 1

cosec . . . cosec . .
2 2 2

W
T R W R W l

R
= πµ × × α = ×µ α = × µ

π

10.29. Trapezoidal or Truncated Conical Pivot Bearing

If the pivot bearing is not conical, but a frustrum of a cone with r1 and r2, the external and
internal radius respectively as shown in Fig. 10.19, then
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Fig.10.19. Trapezoidal
pivot bearing.

Area of the bearing surface,
2 2

1 2[( ) ( ) ]A r r= π −

∴  Intensity of uniform pressure,

2 2
1 2[( ) ( ) ]n

W W
p

A r r
= =

π − ...(i)

1.  Considering uniform pressure

The total torque acting on the bearing is obtained by integrating the
value of Tr (as discussed in Art. 10.27) within the limits r1 and r2.

∴  Total torque acting on the bearing,

1

2

1

2

3
22 . cosec . . 2 . .cosec

3

rr

n n
r r

rT p r dr p
 = πµ α = πµ α  ∫

3 3
1 2( ) ( )2 . .cosec

3
n

r rp
 −= πµ α 
 

Substituting the value of pn from equation (i),
3 3

1 2
2 2

1 2

( ) ( )2 . cosec
[( ) ( ) ] 3

W r rT
r r

 −= πµ × × α π −  

3 3
1 2

2 2
1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  

2.  Considering uniform wear

We have discussed in Art. 10.26 that the load transmitted to the ring,

δW  = 2πC.dr

∴  Total load transmitted to the ring,

1

1

2

2

1 22 . 2 [ ] 2 ( )
r

r
r

r

W C dr C r C r r= π = π = π −∫

or
1 22 ( )

W
C

r r
=

π −       ...(ii)

We know that the torque acting on the ring, considering uniform wear, is

Tr = 2π µ.C cosec α.r.dr

∴    Total torque acting on the bearing,

1

2

1

2

2
2 . sec . . 2 . .cosec

2

rr

r r

rT C co r dr C
 = π µ α = π µ α  ∫

2 2
1 2

. .cosec ( ) ( )C r r = π µ α − 
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Substituting the value of C from equation (ii), we get
2 2

1 2
1 2

cosec [( ) ( ) ]
2 ( )

W
T r r

r r
= πµ × × α −

π −

1 2

1
. ( ) cosec . . cosec

2
W r r W R= × µ + α = µ α

where R = Mean radius of the bearing 1 2

2

r r+
=

Example 10.17. A conical pivot supports a load of 20 kN, the cone angle is 120º and the
intensity of normal pressure is not to exceed 0.3 N/mm2. The external diameter is twice the internal
diameter. Find the outer and inner radii of the bearing surface. If the shaft rotates at 200 r.p.m. and
the coefficient of friction is 0.1, find the power absorbed in friction. Assume uniform pressure.

Solution.   Given : W = 20 kN = 20 × 103 N ; 2 α = 120º  or  α = 60º ; pn = 0.3 N/mm2 ;
N = 200 r.p.m. or ω = 2 π × 200/60 = 20.95 rad/s ; µ = 0.1

Outer and inner radii of the bearing surface

Let r1 and r2 = Outer and inner radii of the bearing surface, in mm.
Since the external diameter is twice the internal diameter, therefore

r1 = 2 r2
We know that intensity of normal pressure ( pn),

3 3

2 2 2 2 2
1 2 2 2 2

20 10 2.12 10
0.3

[( ) ( ) ] [(2 ) ( ) ] ( )

W

r r r r r

× ×
= = =

π − π −

∴              2 3 3
2 2( ) 2.12 10 / 0.3 7.07 10 or 84 mmr r= × = × = Ans.

and r1 = 2 r2 = 2 × 84 = 168 mm  Ans.

Power absorbed in friction

We know that total frictional torque (assuming uniform pressure),

                      

3 3
1 2

2 2
1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
T W

r r

 −
= × µ α  

−  

                          
3 3

3
2 2

2 (168) (84)
0.1 20 10 cosec 60º N-mm

3 (168) (84)

 −= × × × × = 
− 

 301760 N-mm = 301.76 N-m=

∴   Power absorbed in friction,

 P = T.ω = 301.76 × 20.95 = 6322 W = 6.322 kW  Ans.

Example 10.18. A conical pivot bearing supports a vertical shaft of 200 mm diameter. It is
subjected to a load of 30 kN. The angle of the cone is 120º and the coefficient of friction is 0.025.
Find the power lost in friction when the speed is 140 r.p.m., assuming 1. uniform pressure ; and
2. uniform wear.

Solution. Given : D = 200 mm or R = 100 mm = 0.1 m ; W = 30 kN = 30 × 103 N ; 2 α = 120º
or α = 60º ; µ = 0.025 ; N = 140 r.p.m. or ω = 2 π × 140/160 = 14.66 rad/s

1.  Power lost in friction assuming uniform pressure

We know that total frictional torque,
2

. . . cosec
3

T W R= × µ α
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32
0.025 30 10 0.1 cosec 60º 57.7 N-m

3
= × × × × × =

∴   Power lost in friction,

P = T.ω = 57.7 × 14.66 = 846 W Ans.

2.  Power lost in friction assuming uniform wear

We know that total frictional torque,
1

. . . cosec
2

T W R= × µ α

31
0.025 30 10 0.1 cosec 60º 43.3 N-m

2
= × × × × × =

∴  Power lost in friction,  P = T.ω = 43.3 × 14.66 = 634.8 W Ans.

10.30. Flat Collar Bearing

We have already discussed that collar bearings are used to take the axial thrust of the rotating
shafts. There may be a single collar or multiple collar bearings as shown in Fig. 10.20 (a) and (b)
respectively. The collar bearings are also known as thrust bearings. The friction in the collar bear-
ings may be found as discussed below :

(a) Single collar bearing (b) Multiple collar bearing.

Fig. 10.20. Flat collar bearings.

Consider a single flat collar bearing supporting a shaft as shown in Fig. 10.20 (a).

Let r1 = External radius of the collar, and

r2 = Internal radius of the collar.

∴   Area of the bearing surface,

A = π [(r1)2 – (r2)2]
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1.  Considering uniform pressure

When the pressure is uniformly distributed over the bearing surface, then the intensity of
pressure,

         2 2
1 2[ ) ( ) ]

W W
p

A r r
= =

π − ...(i)

We have seen in Art. 10.25, that the frictional torque on the ring of radius r and thickness dr,

         22 . . .rT p r dr= πµ

Integrating this equation within the limits from r2 to r1 for the total frictional torque on the
collar.

∴  Total frictional torque,

          

1
1

2
2

3 3
2 3 1 2( ) ( )2 . . . 2 . 2 .

3 3

r
r

r
r

r r rT p r dr p p
   −= πµ = πµ = πµ   

  
∫

Substituting the value of p from equation (i),

         
3 3

1 2
2 2

1 2

( ) ( )2
[( ) ( ) ] 3

W r rT
r r

 −= πµ ×  π −  

          

3 3
1 2

2 2
1 2

( ) ( )2
.

3 ( ) ( )

r r
W

r r

 −
= × µ  

−  

Notes: 1. In order to increase the amount of rubbing surfaces so as to reduce the intensity of pressure, it is better
to use two or more collars, as shown in Fig. 10.20 (b), rather than one larger collar.

2.  In case of a multi-collared bearings with, say n collars, the intensity of the uniform pressure,

                                                 2 2
1 2

Load

No. of collars × Bearing area of one collar [( ) ( ) ]

W
p

n r r
= =

π −

3.  The total torque transmitted in a multi collared shaft remains constant i.e.

                                  

3 3
1 2

2 2
1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  
2.  Considering unifrom wear

We have seen in Art. 10.25 that the load transmitted on the ring, considering uniform wear is,

        .2 . 2 . 2 .r

C
W p r dr r dr C dr

r
δ = π = × π = π

∴  Total load transmitted to the collar,

       
1

2

1

2 1 22 . 2 [ ] 2 ( )
r r

rr
W C dr C r C r r= π = π = π −∫

or         
1 22 ( )

W
C

r r
=

π − ...(ii)
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We also know that frictional torque on the ring,

. . 2 . . 2 . . .rT W r C dr r C r dr= µ δ = µ × π = πµ
∴  Total frictional torque on the bearing,

11

2
2

2 22
1 2( ) ( )2 . . 2 . 2 .

2 2

rr

r r

r rrT C r dr C C
   −= πµ = πµ = πµ      

∫

2 2
1 2. [( ) ( ) ]C r r= πµ −

Substituting the value of C from equation (ii),

2 2
1 2 1 2

1 2

1
[( ) ( ) ] . ( )

2 ( ) 2

W
T r r W r r

r r
= πµ × − = × µ +

π −

Example 10.19. A thrust shaft of a ship has 6
collars of 600 mm external diameter and 300 mm internal
diameter. The total thrust from the propeller is 100 kN. If
the coefficient of friction is 0.12 and speed of the engine
90 r.p.m., find the power absorbed in friction at the thrust
block, assuming l. uniform pressure ; and 2. uniform
wear.

Solution. Given : n = 6 ; d1 = 600 mm or r1 = 300
mm ; d2 = 300 mm or r2 = 150 mm ; W = 100 kN
= 100 × 103 N ; µ = 0.12 ; N  = 90 r.p.m. or
ω = 2 π × 90/60 = 9.426 rad/s

1.  Power absorbed in friction, assuming uniform
      pressure

We know that total frictional torque transmitted,

                              

3 3
1 2

2 2
1 2

( ) ( )2
.

3 ( ) ( )

r r
T W

r r

 −
= × µ  

−  

3 3
3 3

2 2

2 (300) (150)
0.12 100 10 2800 10 N-mm

3 (300) (150)

 −= × × × = × 
− 

2800 N-m=
∴   Power absorbed in friction,

. 2800 9.426 26 400 W 26.4 kWP T= ω = × = = Ans.

2.  Power absorbed in friction assuming uniform wear

We know that total frictional torque transmitted,

3
1 2

1 1
. ( ) 0.12 100 10 (300 150) N-mm

2 2
T W r r= × µ + = × × × +

32700 10 N-mm 2700 N-m= × =

∴  Power absorbed in friction,

P = T.ω =  2700 × 9.426 = 25 450 W = 25.45 kW  Ans.

Ship propeller.
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Example 10.20. A shaft has a number of a collars integral with it. The external diameter of
the collars is 400 mm and the shaft diemater is 250 mm. If the intensity of pressure is 0.35 N/mm2

(uniform) and the coefficient of friction is 0.05, estimate : 1. power absorbed when the shaft runs at
105 r.p.m. carrying a load of 150 kN ; and 2. number of collars required.

Solution. Given : d1 = 400 mm  or r1 = 200 mm ; d2 = 250 mm or r2 = 125 mm ; p = 0.35
N/mm2 ; µ = 0.05 ; N = 105 r.p.m or ω = 2 π × 105/60 = 11 rad/s ; W = 150 kN = 150 × 103 N

1.  Power absorbed

We know that for uniform pressure, total frictional torque transmitted,

                   

3 3 3 3
31 2

2 2 2 2
1 2

( ) ( )2 2 (200) (125)
. 0.05 150 10 N-mm

3 3( ) ( ) (200) (125)

r r
T W

r r

   − −= × µ = × × ×   
− −    

                        35000 248 1240 10 N-mm 1240 N-m= × = × =
∴  Power absorbed,

      . 1240 11 13640 W 13.64 kWP T= ω = × = = Ans.
2.  Number of collars required

Let       n  = Number of collars required.
We know that the intensity of uniform pressure ( p),

              

3

2 2 2 2
1 2

150 10 1.96
0.35

. [( ) ( ) ] . [(200) (125) ]

W

nn r r n

×= = =
π − π −

∴       1.96 / 0.35 5.6 say 6n = = Ans.

Example 10.21. The thrust of a propeller shaft in a marine engine is taken up by a number
of collars integral with the shaft which is 300 mm in diameter. The thrust on the shaft is 200 kN and
the speed is 75 r.p.m. Taking µ constant and equal to 0.05 and assuming intensity of pressure as
uniform and equal to 0.3 N/mm2, find the external diameter of the collars and the number of collars
required, if the power lost in friction is not to exceed 16 kW.

Solution. Given : d2 = 300 mm or r2 = 150 mm = 0.15 m ; W = 200 kN = 200 × 103 N ;
N = 75 r.p.m. or ω = 2 π × 75/60 = 7.86 rad/s ; µ = 0.05 ; p = 0.3 N/mm2 ; P = 16 kW = 16 × 103 W

Let       T = Total frictional torque transmitted in N-m.
We know that power lost in friction (P),
       16 × 103 = T.ω = T × 7.86  or  T = 16 × 103/7.86 = 2036 N-m

External diameter of the collar
Let        d1 = External diameter of the collar in metres = 2 r1.
We know that for uniform pressure, total frictional torque transmitted (T ),

      

3 3 2 2
1 2 1 2 1 2

2 2
1 21 2

( ) ( ) ( ) ( ) .2 2
2036 .

3 3( ) ( )

r r r r r r
W W

r rr r

   − + +
= × µ = × µ ×   

+−     

*

      

2 2
3 1 1

1

( ) (0.15) 0.152
0.05 200 10

3 0.15

r r

r

 + + ×
= × × ×  

+  

    3 2
1 1 12036 3( 0.15) 20 10 [( ) 0.15 0.0225]r r r× + = × + +

*
3 3 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2
2 3

1 2 1 2 1 21 2

( ) ( ) ( ) [( ) ( ) . ] ( ) ( ) .

( ) ( )( ) ( )

r r r r r r r r r r r r

r r r r r rr r

− − + + + +
= =

+ − +−
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Dividing throughout by 20 × 103,

           0.305 (r1 + 0.15) = (r1)
2 + 0.15 r1 + 0.0225

(r1)2 – 0.155 r1 – 0.0233 = 0

Solving this as a quadratic equation,

     
2

1

0.155 (0.155) 4 0.0233 0.155 0.342

2 2
r

± + × ±= =

    = 0.2485 m = 248.5 mm ...(Taking + ve sign)

∴     d1 = 2 r1 = 2 × 248.5 = 497 mm  Ans.

Number of collars

Let      n = Number of collars.

We know that intensity of pressure (p),

     

3

2 2 2 2
1 2

200 10 1.62
0.3

[ ) ( ) ] [(248.5) (150) ]

W

nn r r n

×= = =
π − π −

∴      1.62 / 0.3 5.4 or 6n = = Ans.

10.31. Friction Clutches

A friction clutch has its principal application in the transmission of power of shafts and
machines which must be started and stopped frequently. Its application is also found in cases in which
power is to be delivered to machines partially or fully loaded. The force of friction is used to start the
driven shaft from rest and gradually brings it up to the proper speed without excessive slipping of the
friction surfaces. In automobiles, friction clutch is used to connect the engine to the driven shaft. In
operating such a clutch, care should be taken so that the friction surfaces engage easily and gradually
brings the driven shaft up to proper speed. The proper alignment of the bearing must be maintained
and it should be located as close to the clutch as possible. It may be noted that

1. The contact surfaces should develop a frictional force that may pick up and hold the load
with reasonably low pressure between the contact surfaces.

2. The heat of friction should be rapidly dissipated and tendency to grab should be at a
minimum.

3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform
distribution of pressure.

The friction clutches of the following types are important from the subject point of view :

1. Disc or plate clutches (single disc or multiple disc clutch),

2. Cone clutches, and

3. Centrifugal clutches.

We shall now discuss, these clutches, in detail, in the following pages. It may be noted that
the disc and cone clutches are based on the same theory as the pivot and collar bearings.

10.32. Single Disc or Plate Clutch

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both
sides are faced with a friction material (usually of Ferrodo). It is mounted on the hub which is free to
move axially along the splines of the driven shaft. The pressure plate is mounted inside the clutch
body which is bolted to the flywheel. Both the pressure plate and the flywheel rotate with the engine
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crankshaft or the driving shaft. The pressure plate
pushes the clutch plate towards the flywheel by a set
of strong springs which are arranged radially inside
the body. The three levers (also known as release
levers or fingers) are carried on pivots suspended
from the case of the body. These are arranged in such
a manner so that the pressure plate moves away from
the flywheel by the inward movement of a thrust
bearing. The bearing is mounted upon a forked shaft
and moves forward when the clutch pedal is pressed.

When the clutch pedal is pressed down, its
linkage forces the thrust release bearing to move in
towards the flywheel and pressing the longer ends of the levers inward. The levers are forced to turn
on their suspended pivot and the pressure plate moves away from the flywheel by the knife edges,
thereby compressing the clutch springs. This action removes the pressure from the clutch plate and
thus moves back from the flywheel and the driven shaft becomes stationary. On the other hand, when
the foot is taken off from the clutch pedal, the thrust bearing moves back by the levers. This allows the
springs to extend and thus the pressure plate pushes the clutch plate back towards the flywheel.

Fig. 10.21. Single disc or plate clutch.

The axial pressure exerted by the spring provides a frictional force in the circumferential
direction when the relative motion between the driving and driven members tends to take place. If the
torque due to this frictional force exceeds the torque to be transmitted, then no slipping takes place
and the power is transmitted from the driving shaft to the driven shaft.

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in
Fig. 10.22 (a).

Single disc clutch
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Let T = Torque transmitted by the clutch,

p = Intensity of axial pressure with which the contact surfaces are held
together,

r1 and r2 = External and internal radii of friction faces, and

µ = Coefficient of friction.

Consider an elementary ring of radius r and thickness dr as shown in Fig. 10.22 (b).

We know that area of contact surface or friction surface,

= 2 π r.dr

∴  Normal or axial force on the ring,

δW = Pressure × Area = p × 2 π r.dr

and the frictional force on the ring acting tangentially at radius r,

Fr = µ.δW  = µ.p × 2 π r.dr

∴   Frictional torque acting on the ring,

                          Tr = Fr × r = µ.p × 2 π r.dr × r = 2 π × µ .p.r2 dr

                                                          (a)                                            (b)

Fig. 10.22. Forces on a single disc or plate clutch.

We shall now consider the following two cases :

1.  When there is a uniform pressure, and

2.  When there is a uniform wear.

1.  Considering uniform pressure

When the pressure is uniformly distributed over the entire area of the friction face, then the
intensity of pressure,

2 2
1 2[( ) ( ) ]

W
p

r r
=

π − ...(i)

where W = Axial thrust with which the contact or friction surfaces are held together.

We have discussed above that the frictional torque on the elementary ring of radius r and
thickness dr is

Tr = 2 π µ.p.r2 dr

Integrating this equation within the limits from r2 to r1 for the total frictional torque.
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∴  Total frictional torque acting on the friction surface or on the clutch,

                          

12

1
2

3 3
2 3 1 2( ) ( )2 . . . 2 2

3 3

rr

r r

r r rT p r dr p p
   −= πµ = πµ = πµ      

∫

Substituting the value of p from equation (i),

                          

3 3
1 2

2 2
1 2

( ) ( )
2

3[( ) ( ) ]

r rW
T

r r

−
= πµ × ×

π −

3 3
1 2

2 2
1 2

( ) ( )2
. . .

3 ( ) ( )

r r
W W R

r r

 −
= × µ = µ 

−  
where                              R = Mean radius of friction surface

3 3
1 2

2 2
1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
2.  Considering uniform wear

In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the
clutch. Since the intensity of pressure varies inversely with the distance, therefore

p.r. = C (a constant)   or   p = C/r ...(i)

and the normal force on the ring,

.2 . 2 . 2 .
C

W p r dr C dr C dr
r

δ = π = × π = π

∴  Total force acting on the friction surface,

[ ]
1

1

2

2

1 22 2 2 ( )
r

r

r
r

W C dr C r C r r= π = π = π −∫

or
1 22 ( )

W
C

r r
=

π −
We know that the frictional torque acting on the ring,

2 22 . . 2 . 2 . . .r

C
T p r dr r dr C r dr

r
= πµ = πµ × × = πµ

...(∵  p = C/r)
∴  Total frictional torque on the friction surface,

1 1

22

2 22
1 2( ) ( )2 . . . 2 . 2 .

2 2

r r

rr

r rrT C r dr C C
   −= πµ = πµ = πµ      

∫
2 2 2 2

1 2 1 2
1 2

. [( ) ( ) ] ( ) ( )
2 ( )

W
C r r r r

r r
 = πµ − = πµ × − π −

1 2

1
. ( ) . .

2
W r r W R= × µ + = µ

where R = Mean radius of the friction surface 1 2

2

r r+
=

Notes : 1. In general, total frictional torque acting on the friction surface (or on the clutch) is given by

T = n.µ.W.R
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where n = Number of pairs of friction or contact surfaces, and

R = Mean radius of friction surface

3 3
1 2

2 2
1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

2.  For a single disc or plate clutch, normally both sides of the disc are effective. Therefore, a single disc
clutch has two pairs of surfaces in contact, i.e. n = 2.

3.  Since the intensity of pressure is maximum at the inner radius (r2) of the friction or contact surface,
therefore equation (i) may be written as

pmax × r2 = C or pmax = C/r2

4.  Since the intensity of pressure is minimum at the outer radius (r1) of the friction or contact surface,
therefore equation (i) may be written as

pmin × r1 = C or pmin = C/r1

5.  The average pressure ( pav) on the friction or contact surface is given by

2 2
1 2

Total force on friction surface

Cross-sectional area of friction surface [( ) ( ) ]av

W
p

r r
= =

π −
6.  In case of a new clutch, the intensity of pressure is approximately uniform but in an old clutch the

uniform wear theory is more approximate.

7.  The uniform pressure theory gives a higher frictional torque than the uniform wear theory. Therefore
in case of friction clutches, uniform wear should be considered, unless otherwise stated.

10.33. Multiple Disc Clutch

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be
transmitted. The inside discs (usually of steel) are fastened to the driven shaft to permit axial motion

(except for the last disc). The outside discs (usually of bronze) are held by bolts and are fastened to
the housing which is keyed to the driving shaft. The multiple disc clutches are extensively used in
motor cars, machine tools etc.

Let n1 = Number of discs on the driving shaft, and

n2 = Number of discs on the driven shaft.

Dual Disc Clutches.
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∴  Number of pairs of contact surfaces,

n = n1 + n2 – 1

and total frictional torque acting on the friction surfaces or on the clutch,

T = n.µ.W.R

where R = Mean radius of the friction surfaces

   

3 3
1 2

2 2
1 2

( ) ( )2

3 ( ) ( )

r r

r r

 −
=  

−  
...(For uniform pressure)

1 2

2

r r+
= ...(For uniform wear)

Fig. 10.23. Multiple disc clutch.

Example 10.22. Determine the maximum, minimum and average pressure in plate clutch
when the axial force is 4 kN. The inside radius of the contact surface is 50 mm and the outside radius
is 100 mm. Assume uniform wear.

Solution. Given : W  = 4 kN = 4 × 103 N ; r2 = 50 mm ; r1 = 100 mm

Maximum pressure

Let pmax = Maximum pressure.

Since the intensity of pressure is maximum at the inner radius (r2), therefore

pmax × r2 = C   or  C = 50 pmax

We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r1 – r2) = 2 π × 50 pmax (100 – 50) = 15 710 pmax

∴ pmax = 4 × 103/15 710 = 0.2546 N/mm2  Ans.

Minimum pressure

Let pmin = Minimum pressure.

Since the intensity of pressure is minimum at the outer radius (r1), therefore

pmin × r1 = C    or    C = 100 pmin
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We know that the total force on the contact surface (W ),

4 × 103 = 2 π C (r1 – r2) = 2π × 100 pmin (100 – 50) = 31 420 pmin

∴ pmin = 4 × 103/31 420 = 0.1273 N/mm2  Ans.

Average pressure

We know that average pressure,

Total normal force on contact surface

Cross-sectional area of contact surfacesavp =

3
2

2 2 2 2
1 2

4 10
0.17 N/mm

[( ) ( ) ] [(100) (50) ]

W

r r

×
= = =

π − π −
Ans.

Example 10.23. A single plate clutch, with both sides effective, has outer and inner
diameters 300 mm and 200 mm respectively. The maximum intensity of pressure at any point in the
contact surface is not to exceed 0.1 N/mm2. If the coefficient of friction is 0.3, determine the power
transmitted by a clutch at a speed 2500 r.p.m.

Solution. Given : d1 = 300 mm or r1 = 150 mm ; d2 = 200 mm or r2 = 100 mm ; p = 0.1 N/mm2 ;
µ = 0.3 ; N = 2500 r.p.m. or ω = 2π × 2500/60 = 261.8 rad/s

Since the intensity of pressure ( p) is maximum at the inner radius (r2), therefore for uniform
wear,

p.r2 = C    or   C = 0.1 × 100 = 10 N/mm

We know that the axial thrust,

W = 2 π C (r1 – r2) = 2 π × 10 (150 – 100) = 3142 N

and mean radius of the friction surfaces for uniform wear,

1 2 150 100
125 mm 0.125m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 2 × 0.3 × 3142 × 0.125 = 235.65 N-m

...( 2,for both sides of plate effective)n =�

∴  Power transmitted by a clutch,

P = T.ω = 235.65 × 261.8 = 61 693 W = 61.693 kW Ans.

Example 10.24. A single plate clutch, effective on both sides, is required to transmit 25 kW
at 3000 r.p.m. Determine the outer and inner radii of frictional surface if the coefficient of friction is
0.255, the ratio of radii is 1.25 and the maximum pressure is not to exceed 0.1 N/mm2. Also deter-
mine the axial thrust to be provided by springs. Ass ume the theory of uniform wear.

Solution. Given: n = 2 ; P = 25 kW = 25 × 103 W ; N = 3000 r.p.m. or ω = 2π × 3000/60
= 314.2 rad/s ; µ = 0.255 ; r1/r2 = 1.25 ; p = 0.1 N/mm2

Outer and inner radii of frictional surface
Let r1 and r2 = Outer and inner radii of frictional surfaces, and

T = Torque transmitted.
Since the ratio of radii (r1/r2) is 1.25, therefore

r1 = 1.25 r2
We know that the power transmitted (P),

25 × 103 = T.ω = T × 314.2

∴ T = 25 × 103/314.2 = 79.6 N-m = 79.6 × 103 N-mm
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Since the intensity of pressure is maximum at the inner radius (r2), therefore

p.r2 = C         or        C = 0.1 r2 N/mm

and the axial thrust transmitted to the frictional surface,

W = 2 π C (r1 – r2) = 2 π × 0.1 r2 (1.25 r2 – r2) = 0.157 (r2)
2 ...(i)

We know that mean radius of the frictional surface for uniform wear,

1 2 2 2
2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

 We know that torque transmitted (T),

79.6 × 103 = n.µ.W.R = 2 × 0.255 × 0.157 (r2)2 × 1.125 r2 = 0.09 (r2)3

∴ (r2)3 = 79.6 × 103/0.09 = 884 × 103   or  r2 = 96 mm  Ans.

and r1 = 1.25 r2 = 1.25 × 96 = 120 mm  Ans.

Axial thrust to be provided by springs

We know that axial thrust to be provided by springs,

W = 2 π C (r1 – r2) = 0.157 (r2)
2 ...[From equation (i)]

= 0.157 (96)2 = 1447 N Ans.

Example 10.25. A single dry plate clutch transmits 7.5 kW at 900 r.p.m. The axial pressure
is limited to 0.07 N/mm2. If the coefficient of friction is 0.25, find 1. Mean radius and face width of
the friction lining assuming the ratio of the mean radius to the face width as 4, and 2. Outer and
inner radii of the clutch plate.

Solution.  Given : P = 7.5 kW = 7.5 × 103 W ; N = 900 r.p.m or ω = 2 π × 900/60 = 94.26 rad/s ;
p = 0.07 N/mm2 ; µ = 0.25

1.  Mean radius and face width of the friction lining

Let R = Mean radius of the friction lining in mm, and

w = Face width of the friction lining in mm,

Ratio of mean radius to the face width,

R/w = 4 ...(Given)

We know that the area of friction faces,

A = 2 π R.w

∴ Normal or the axial force acting on the friction faces,

W = A × p = 2 π R.w.p

We know that torque transmitted (considering uniform wear),

. . . . (2 . . )T n W R n R w p R= µ = µ π

3. . . .2
24

R
n R n p RR p

π = µ = × µπ × ×   ...(∵ w = R/4)

3 32 0.25 0.07 0.055 N-mm
2

R R
π

= × × × = ...(i)

...(∵  n = 2, for single plate clutch)
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We also know that power transmitted (P),

7.5 × 103 = T.ω = T × 94.26

∴ T = 7.5 × 103/94.26 = 79.56 N-m = 79.56 × 103 N-mm ...(ii)

From equations (i) and (ii),

R3 = 79.56 × 103/0.055 = 1446.5 × 103  or  R = 113 mm Ans.

and w = R/4 = 113/4 = 28.25mm Ans.

2.  Outer and inner radii of the clutch plate

Let r1 and r2 = Outer and inner radii of the clutch plate respectively.

Since the width of the clutch plate is equal to the difference of the outer and inner radii,
therefore

w = r1 – r2 = 28.25 mm ...(iii)

Also for uniform wear, the mean radius of the clutch plate,

                              1 2
1 2or 2 2 113 226 mm

2

r r
R r r R

+
= + = = × = ...(iv)

From equations (iii) and (iv),

r1 = 127.125 mm ; and r2 = 98.875  Ans.

Example 10.26. A dry single plate clutch is to be designed for an automotive vehicle whose
engine is rated to give 100 kW at 2400 r.p.m. and maximum torque 500 N-m. The outer radius of
friction plate is 25% more than the inner radius. The intensity of pressure between the plate  is not to
exceed 0.07 N/mm2. The coefficient of friction may be assumed equal to 0.3. The helical springs
required by this clutch to provide axial force necessary to engage the clutch are eight. If each spring
has stiffness equal to 40 N /mm, determine the initial compression in the springs and dimensions of
the friction plate.

Solution. Given : P = 100 kW = 100 × 103 W ; T = 500 N-m = 500 × 103 N-mm ;
p = 0.07 N/mm2 ; µ = 0.3 ; Number of springs = 8 ; Stiffness = 40 N/mm

Dimensions of the friction plate

Let r1 and r2 = Outer and inner radii of the friction plate respectively.
Since the outer radius of the friction plate is 25% more than the inner radius, therefore

r1 = 1.25 r2

We know that, for uniform wear,

p.r2 = C     or    C = 0.07 r2 N/mm

and load transmitted to the friction plate,

W = 2 π C (r1 – r2) = 2 π × 0.07 r2 (1.125 r2 – r2) = 0.11 (r2)2 N
         ...(i)

We know that mean radius of the plate for uniform wear,

1 2 2 2
2

1.25
1.125

2 2

r r r r
R r

+ +
= = =

∴  Torque transmitted (T ),

500 × 103 = n.µ.W .R = 2 × 0.3 × 0.11 (r2)2 × 1.125 r2 = 0.074 (r2)
3

...(∵  n = 2)

             ∴ (r2)3 = 500 × 103/0.074 = 6757 × 103  or  r2 = 190 mm   Ans.
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and r1 = 1.25 r2 = 1.25 × 190 = 273.5 mm Ans.

Initial compression of the springs

We know that total stiffness of the springs,

s = Stiffness per spring × No. of springs = 40 × 8 = 320 N/mm

Axial force required to engage the clutch,

W = 0.11 (r2)2 = 0.11 (190)2 = 3970 N ...[From equation (i)]

∴  Initial compression in the springs

= W/s = 3970/320 = 12.5 mm  Ans.

Example 10.27. A rotor is driven by a co-axial motor  through a single plate clutch, both
sides of the plate being effective. The external and internal diameters of the plate are respectively
220 mm and 160 mm and the total spring load pressing the plates together is 570 N. The motor
armature and shaft has a mass of 800 kg with an effective radius of gyration of 200 mm. The rotor
has a mass of 1300 kg with an effective radius of gyration of 180 mm. The coefficient of friction for
the clutch is 0.35.

The driving motor is brought up to a speed of 1250 r.p.m. when the current is switched off
and the clutch suddenly engaged. Determine

1. The final speed of motor and rotor, 2. The time to reach this speed, and 3. The kinetic
energy lost during the period of slipping.

How long would slipping continue if it is assumed that a constant resisting torque of 60 N-m
were present? If instead of a resisting torque, it is assumed that a constant driving torque of 60 N-m
is maintained on the armature shaft, what would then be slipping time?

Solution. Given : d1 = 220 mm or r1 = 110 mm ; d2 = 160 mm or r2 = 80 mm ; W = 570 N ;
m1 = 800 kg ; k1 = 200 mm = 0.2 m ; m2 = 1300 kg ; k2 = 180 mm = 0.18 m ; µ = 0.35 ; N1 = 1250 r.p.m.
or ω1 = π × 1250/60 = 131 rad/s

1. Final speed of the motor and rotor

Let ω3 = Final speed of the motor and rotor in rad/s.

We know that moment of inertia for the motor armature and shaft,

I1 = m1 (k1)2 = 800 (0.2)2 = 32 kg-m2

and moment of inertia for the rotor,

I2 = m2 (k2)2 = 1300 (0.18)2 = 42.12 kg-m2

Since the angular momentum before slipping is equal to the angular momentum after slip-
ping, therefore

I1.ω1 + I2.ω2 = (I1 + I2) ω3

32 × 131 + I2 × 0 = (32 + 42.12) ω3 = 74.12 ω3 ...(∵ ω2 = 0)

∴ ω 3 = 32 × 131 / 74.12 = 56.56 rad/s Ans.

2. Time to reach this speed

Let t = Time to reach this speed i.e. 56.56 rad/s.

We know that mean radius of the friction plate,

1 2 110 80
95 mm 0.095 m

2 2

r r
R

+ += = = =
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and total frictional torque,

T = n.µ.W.R = 2 × 0.35 × 570 × 0.095 = 37.9 N-m ...(∵  n = 2)

Considering the rotor, let α2, ωI and ωF be the angular acceleration, initial angular speed and
the final angular speed of the rotor respectively.

We know that the torque (T ),

37.9 = I2.α2 = 42.12 α2    or    α2 = 37.9/42.12 = 0.9  rad/s2

Since the angular acceleration is the rate of change of angular speed, therefore

F I F I
2

2

56.56 0
or 62.8 s

0.9
t

t

ω − ω ω − ω −α = = = =
α

Ans.

...(∵  ωF = ω3 = 56.56 rad/s, and ω1 = 0)

3.  Kinetic energy lost during the period of slipping

We know that angular kinetic energy before impact,

2 2
1 1 2 2 1 1

1 1
( ( ) ( )

2 2
E I I I2

1
1

= ω ) + ω = ω
2

...(∵  ω2 = 0)

21
32(131) 274 576 N-m

2
= × =

and angular kinetic energy after impact,

                            2 2
2 1 2 3

1 1
( ) ( ) (32 42.12) (56.56) 118 556 N-m

2 2
E I I= + ω = + =

∴  Kinetic energy lost during the period of slipping,

 = E1 – E2 = 274 576 – 118 556 = 156 020 N-m  Ans.
Time of slipping assuming constant resisting torque

Let t1 = Time of slipping, and

ω2 = Common angular speed of armature and rotor shaft = 56.56 rad/s

When slipping has ceased and there is exerted a constant torque of 60 N-m on the armature
shaft, then

Torque on armature shaft,

T1 = – 60 – 37.9 = – 97.9 N-m

Torque on rotor shaft,

T2 = T = 37.9 N-m

Considering armature shaft,

                            1
3 1 1 1 1 1 1 1

1

97.9
. 131 131 3.06

32

T
t t t t

I
ω = ω +α = ω + × = − × = − ...(i)

Considering rotor shaft,

2
3 2 1 1 1 1

2

37.9
. 0.9

42.12

T
t t t t

I
ω = α = × = × =        ...(ii)

From equations (i) and (ii),

1 1 1131 3.06 0.9 or 3.96 131t t t− = =

∴ 1 131/ 3.96 33.1 st = = Ans.
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Time of slipping assuming constant driving torque of 60 N-m

In this case, T1 = 60 – 37.9 = 22.1 N-m

Since    1 2
1 1 1

1 2

, therefore
T T

t t
I I

ω + × = ×

        1 1 1 1

22.1 37.9
131 or 131 0.69 0.9

32 42.12
t t t t+ × = × + =

∴ 0.9 t1 – 0.69 t1 = 131      or      t1 = 624 s  Ans.

Example 10.28. A multiple disc clutch has five plates having four pairs of active friction
surfaces. If the intensity of pressure is not to exceed 0.127 N/mm2, find the power transmitted at 500
r.p.m. The outer and inner radii of friction surfaces are 125 mm and 75 mm respectively. Assume
uniform wear and take coefficient of friction = 0.3.

Solution. Given : n1 + n2 = 5 ; n = 4 ; p = 0.127 N/mm2 ; N = 500 r.p.m. or ω = 2π × 500/60
= 52.4 rad/s ; r1 = 125 mm ; r2 = 75 mm ; µ = 0.3

Since the intensity of pressure is maximum at the inner radius r2, therefore

p.r2 = C      or     C = 0.127 × 75 = 9.525 N/mm

We know that axial force required to engage the clutch,

W = 2 π C (r1 – r2) = 2 π × 9.525 (125 – 75) = 2990 N

and mean radius of the friction surfaces,

1 2 125 75
100 mm 0.1 m

2 2

r r
R

+ +
= = = =

We know that torque transmitted,

T = n.µ.W.R = 4 × 0.3 × 2990 × 0.1 = 358.8 N-m

∴ Power transmitted,

P = T.ω = 358.8 × 52.4 = 18 800 W = 18.8 kW  Ans.

Example 10.29. A multi-disc clutch has three discs on the driving shaft and two on the
driven shaft. The outside diameter of the contact surfaces is 240 mm and inside diameter 120 mm.
Assuming uniform wear and coefficient of friction as 0.3, find the maximum axial intensity of pres-
sure between the discs for transmitting 25 kW at 1575 r.p.m.

Solution. Given : n1 = 3 ; n2 = 2 ; d1 = 240 mm or  r1 = 120 mm ; d2 = 120 mm or r2 = 60 mm ;
µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Let T = Torque transmitted in N-m, and

W = Axial force on each friction surface.

We know that the power transmitted (P),

25 × 103 = T.ω = T × 165    or    T = 25 × 103/165 = 151.5 N-m

Number of pairs of friction surfaces,

n = n1 + n2 – 1 = 3 + 2 – 1 = 4

and mean radius of friction surfaces for uniform wear,

1 2 120 60
90 mm 0.09 m

2 2

r r
R

+ +
= = = =
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We know that torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 × W × 0.09 = 0.108 W

∴ W = 151.5/0.108 = 1403 N

Let p = Maximum axial intensity of pressure.

Since the intensity of pressure ( p) is maximum at the inner radius (r2 ), therefore for uniform
wear

p.r2 = C   or    C = p × 60 = 60 p N/mm

We know that the axial force on each friction surface (W ),

1403 = 2 π.C (r1 – r2) = 2 π × 60 p (120 – 60) = 22 622 p

∴ p = 1403/22 622 = 0.062 N/mm2  Ans.

Example 10.30. A plate clutch has three discs on the driving shaft and two discs on the
driven shaft, providing four pairs of contact surfaces. The outside diameter of the contact surfaces is
240 mm and inside diameter 120 mm. Assuming uniform pressure and µ = 0.3; find the total spring
load pressing the plates together to transmit 25 kW at 1575 r.p.m.

If there are 6 springs each of stiffness 13 kN/m and each of the contact surfaces has worn
away by 1.25 mm, find the maximum power that can be transmitted, assuming uniform wear.

Solution. Given : n1 = 3 ; n2 = 2 ; n = 4 ; d1 = 240 mm or r1 = 120 mm ; d2 = 120 mm or
r2 = 60 mm ; µ = 0.3 ; P = 25 kW = 25 × 103 W ; N = 1575 r.p.m. or ω = 2 π × 1575/60 = 165 rad/s

Total spring load

Let W = Total spring load, and

T = Torque transmitted.

We know that power transmitted (P),

25 × 103 = T.ω = T × 165  or   T = 25 × 103/165 = 151.5 N-m

Mean radius of the contact surface, for uniform pressure,

                             

3 3 3 3
1 2

2 2 2 2
1 2

( ) ( )2 2 (120) (60)
93.3 mm 0.0933 m

3 3( ) ( ) (120) (60)

r r
R

r r

   − −= = = =   
− −    

and torque transmitted (T ),

151.5 = n.µ.W.R = 4 × 0.3 W × 0.0933 = 0.112 W

∴ W = 151.5/0.112 = 1353 N  Ans.

Maximum power transmitted

Given : No of springs = 6

∴  Contact surfaces of the spring

= 8

Wear on each contact surface

= 1.25 mm

∴             Total wear = 8 × 1.25 = 10 mm = 0.01 m

Stiffness of each spring = 13 kN/m = 13 × 103 N/m

∴  Reduction in spring force

= Total wear × Stiffness per spring × No. of springs

= 0.01 × 13 × 103 × 6 = 780 N
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∴ New axial load, W = 1353 – 780 = 573 N
We know that mean radius of the contact surfaces for uniform wear,

                              1 2 120 60
90 mm 0.09 m

2 2

r r
R

+ +
= = = =

∴ Torque transmitted,
T = n.µ.W.R. = 4 × 0.3 × 573 × 0.09 = 62 N-m

and maximum power transmitted,

 P = T. ω = 62 × 155 = 10 230 W = 10.23 kW  Ans.

10.34. Cone Clutch

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it
has been replaced completely by the disc clutch.

Fig. 10.24. Cone clutch.

It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the
driving shaft by a sunk key and has an inside conical surface or face which exactly fits into the outside
conical surface of the driven. The driven member resting on the feather key in the driven shaft, may
be shifted along the shaft by a forked lever provided at B, in order to engage the clutch by bringing the
two conical surfaces in contact. Due to the frictional resistance set up at this contact surface, the
torque is transmitted from one shaft to another. In some cases, a spring is placed around the driven
shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains
the pressure between them, and the forked lever is used only for disengagement of the clutch. The
contact surfaces of the clutch may be metal to metal contact, but more often the driven member is
lined with some material like wood, leather, cork or asbestos etc. The material of the clutch faces (i.e.
contact surfaces) depends upon the allowable normal pressure and the coefficient of friction.

Consider a pair of friction surface as shown in Fig. 10.25 (a). Since the area of contact of a
pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone clutch may
be determined in the similar manner as discussed for conical pivot bearings in Art. 10.28.

Let pn = Intensity of pressure with which the conical friction surfaces are held
together (i.e. normal pressure between contact surfaces),

r1 and r2 = Outer and inner radius of friction surfaces respectively.
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R = Mean radius of the friction surface 1 2 ,
2

r r+
=

α = Semi angle of the cone (also called face angle of the cone) or the
angle of the friction surface with the axis of the clutch,

µ = Coefficient of friction between contact surfaces, and

b = Width of the contact surfaces (also known as face width or clutch
face).

Fig. 10.25. Friction surfaces as a frustrum of a cone.

Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length
of ring of the friction surface, such that

dl = dr.cosec α
∴  Area of the ring,

A = 2π r.dl = 2πr.dr cosec α
We shall consider the following two cases :

1. When there is a uniform pressure, and

2. When there is a uniform wear.

1.  Considering uniform pressure

We know that normal load acting on the ring,

δWn = Normal pressure × Area of ring = pn × 2 π r.dr.cosec α
and the axial load acting on the ring,

δW = Horizontal component of δW n (i.e. in the direction of W )

= δWn × sin α = pn × 2π r.dr. cosec α × sin α = 2π × pn.r.dr

∴  Total axial load transmitted to the clutch or the axial spring force required,

                            

11

2
2

2 22
1 2( ) ( )2 . . 2 2

2 2

rr

n n n
r r

r rrW p r dr p p
   −= π = π = π      

∫

2 2
1 2( ) ( )np r r = π − 

∴ 2 2
1 2[( ) ( ) ]n

W
p

r r
=

π − ...(i)
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We know that frictional force on the ring acting tangentially at radius r,

Fr = µ.δW n = µ.pn × 2 π r.dr.cosec α
∴   Frictional torque acting on the ring,

                                 Tr = Fr × r = µ.pn × 2 π r.dr. cosec α.r = 2 π µ.pn.cosec α.r2 dr

Integrating this expression within the limits from r2 to r1 for the total frictional torque on the
clutch.

∴  Total frictional torque,

2

11

2

3
22 . .cosec . . 2 .cosec

3

rr

n n
r r

rT p r dr p
 = πµ α = πµ α  ∫

3 3
1 2( ) ( )

2 .cosec
3n

r r
p

 −
= π µ α  

 
Substituting the value of pn from equation (i), we get

3 3
1 2

2 2
1 2

( ) ( )
2 cosec

3[( ) ( ) ]

r rW
T

r r

 −
= π µ × × α 

 π −

 

3 3
1 2

2 2
1 2

( ) ( )2
. .cosec

3 ( ) ( )

r r
W

r r

 −
= × µ α  

−  
..(ii)

2.  Considering uniform wear
In Fig. 10.25, let pr be the normal intensity of pressure at a distance r from the axis of the

clutch. We know that, in case of uniform wear, the intensity of pressure varies inversely with the
distance.

∴ pr .r = C (a constant)    or    pr = C / r
We know that the normal load acting on the ring,

δWn = Normal pressure × Area of ring = pr × 2πr.dr cosec α
and the axial load acting on the ring ,

                            δW = δWn × sin α = pr.2 π r.dr.cosec α .sin α = pr × 2 π r.dr

2 . 2 .
C

r dr C dr
r

= × π = π ...(∵  pr = C / r)

∴    Total axial load transmitted to the clutch,

[ ]
1

1

2

2

1 22 . 2 2 ( )
r

r
r

r

W C dr C C r rr= π = π = π −∫

or                          
1 22 ( )

W
C

r r
=

π −
...(iii)

We know that frictional force acting on the ring,

Fr = µ.δW n = µ.pr × 2 π r × dr cosec α
and frictional torque acting on the ring,

Tr = Fr × r = µ.pr  × 2 π r.dr.cosec α × r

22 . .cosec 2 . cosec
C

r dr C r dr
r

= µ × × π α = πµ α ×
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∴  Total frictional torque acting on the clutch,

 

11

2
2

2
2 . .cosec . 2 . .cosec

2

rr

r r

rT C r dr C
 = πµ α = πµ α  ∫

2 2
1 2( ) ( )2 . .cosec

2

r rC
 −= πµ α 
 

Substituting the value of C from equation (i), we have
2 2

1 2

1 2

( ) ( )2 cosec
2 ( ) 2

W r rT
r r

 −= πµ × × α π −  

1 2. cosec . . cosec
2

r r
W W R

+ = µ α = µ α  
...(iv)

where 1 2

2

r r
R

+
= =  Mean radius of friction surface

Since the normal force acting on the friction surface, W n = W /sin α, therefore the equation
(iv) may be written as

T = µ.Wn.R ...(v)

The forces on a friction surface, for steady operation of the clutch and after the clutch is
engaged, is shown in Fig. 10.26.

Fig. 10.26. Forces on a friction surface.

From Fig. 10.26 (a), we find that

1 2
1 2 1 2sin ; and or 2

2

r r
r r b R r r R

+
− = α = + =
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∴   From equation, (i), normal pressure acting on the friction surface,

2 2
1 2 1 21 2

( ) ( ) 2 . .sin[( ) ( ) ]n

W W W
p

r r r r R br r
= = =

π + − π απ −

or W = pn × 2 π R.b sin α = Wn sin α
where Wn = Normal load acting on the friction surface = pn × 2 π R.b

Now the equation (iv) may be written as,
2( 2 . sin ) cosec 2 . .n nT p R b R p R b= µ × π α α = πµ

The following points may be noted for a cone clutch :

1. The above equations are valid for steady operation of the clutch and after the clutch is
engaged.

2. If the clutch is engaged when one member is stationary and the other rotating (i.e. during
engagement of the clutch) as shown in Fig. 10.26 (b), then the cone faces will tend to slide on each
other due to the presence of relative motion. Thus an additional force (of magnitude equal to µ.Wn.cos α)
acts on the clutch which resists the engagement and the axial force required for engaging the clutch
increases.

∴   Axial force required for engaging the clutch,

We = W  + µ.W n cos α = Wn sin α + µ.W n cos α
= Wn (sin α + µ cos α)

3. Under steady operation of the clutch, a decrease in the semi-cone angle (α) increases the
torque produced by the clutch (T ) and reduces the axial force (W ). During engaging period, the axial
force required for engaging the clutch (We) increases under the influence of friction as the angle α
decreases. The value of α can not be decreased much because smaller semi-cone angle (α) requires
larger axial force for its disengagement.

For free disengagement of the clutch, the value of tan α must be greater than µ. In case the
value of tan α is less than µ, the clutch will not disengage itself and the axial force required to
disengage the clutch is given by

Wd = Wn (µ cos α – sin α)

Example 10.31. A conical friction clutch is used to transmit 90 kW at 1500 r.p.m. The semi-
cone angle is 20º and the coefficient of friction is 0.2. If the mean diameter of the bearing surface is
375 mm and the intensity of normal pressure is not to exceed 0.25 N/mm2, find the dimensions of the
conical bearing surface and the axial load required.

Solution. Given : P = 90 kW = 90 × 103 W ; N = 1500 r.p.m. or ω = 2 π × 1500/60 = 156
rad/s ; α = 20º ; µ = 0.2 ; D = 375 mm or R = 187.5 mm ; pn = 0.25 N/mm2

Dimensions of the conical bearing surface

Let r1 and r2 = External and internal radii of the bearing surface respectively,

b = Width of the bearing surface in mm, and

T = Torque transmitted.

We know that power transmitted (P),

90 × 103 = T.ω = T × 156

∴ T = 90 × 103/156 = 577 N-m = 577 × 103 N-mm
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and the torque transmitted (T),
577 × 103 = 2 π µ pn.R2.b = 2π × 0.2 × 0.25 (187.5)2 b = 11 046 b

∴ b = 577 × 103/11 046 = 52.2 mm  Ans.
We know that r1 + r2 = 2R = 2 × 187.5 = 375 mm ...(i)

and r1 – r2 = b sin α = 52.2 sin 20º = 18 mm ...(ii)
From equations (i) and (ii),

r1 = 196.5 mm, and r2 = 178.5 mm  Ans.
Axial load required

Since in case of friction clutch, uniform wear is considered and the intensity of pressure is
maximum at the minimum contact surface radius (r2), therefore

pn.r2 = C (a constant) or C = 0.25 × 178.5 = 44.6 N/mm

We know that the axial load required,

W = 2πC (r1 – r2) = 2π × 44.6 (196.5 – 178.5) = 5045 N  Ans.

Example 10.32. An engine developing 45 kW at 1000 r.p.m. is fitted with a cone clutch built
inside the flywheel. The cone has a face angle of 12.5º and a maximum mean diameter of 500 mm.
The coefficient of friction is 0.2. The normal pressure on the clutch face is not to exceed 0.1 N/mm2.
Determine : 1. the axial spring force necessary to engage to clutch, and 2. the face width required.

Solution. Given : P = 45 kW = 45 × 103 W ; N = 1000 r.p.m. or ω = 2π × 1000/60 = 104.7
rad/s ; α = 12.5º ; D = 500 mm or R = 250 mm = 0.25 m ; µ = 0.2 ; pn = 0.1 N/mm2

1.  Axial spring force necessary to engage the clutch

First of all, let us find the torque (T ) developed by the clutch and the normal load (W n) acting
on the friction surface.

We know that power developed by the clutch (P),

45 × 103 = T.ω = T × 104.7   or   T = 45 × 103/104.7 = 430 N-m

We also know that the torque developed by the clutch (T),

430 = µ.W n.R = 0.2 × Wn × 0.25 = 0.05 W n

∴ Wn = 430/0.05 = 8600 N

and axial spring force necessary to engage the clutch,

We = Wn (sin α + µ cos α)

= 8600 (sin 12.5º + 0.2 cos 12.5º) = 3540 N   Ans.
2.  Face width required

Let b = Face width required.

We know that normal load acting on the friction surface (Wn),

8600 = pn × 2 π R.b = 0.1 × 2π × 250 × b = 157 b

∴ b = 8600/157 = 54.7 mm    Ans.
Example 10.33. A leather faced conical clutch has a cone angle of 30º. If the intensity of

pressure between the contact surfaces is limited to 0.35 N/mm2 and the breadth of the conical surface
is not to exceed one-third of the mean radius, find the dimensions of the contact surfaces to transmit
22.5 kW at 2000 r.p.m. Assume uniform rate of wear and take coefficient of friction as 0.15.

Solution. Given : 2 α = 30º  or  α = 15º  ; pn = 0.35 N/mm2; b = R/3 ; P = 22.5 kW =
22.5 × 103 W ; N = 2000 r.p.m. or ω = 2 π × 2000/60 = 209.5 rad/s ; µ = 0.15

Let r1 = Outer radius of the contact surface in mm,
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r2 = Inner radius of the contact surface in mm,

R = Mean radius of the the contact surface in mm,

b = Face width of the contact surface in mm = R/3, and

T = Torque transmitted by the clutch in N-m.

We know that power transmitted (P),

22.5 × 103 = T.ω = T × 209.5

∴ T = 22.5 × 103/209.5 = 107.4 N-m = 107.4 × 103 N-mm

We also know that torque transmitted (T ),
107.4 × 103 = 2π µ pn.R

2. b = 2π × 0.15 × 0.35 × R2 × R/3 = 0.11 R3

∴ R3 = 107.4 × 103/0.11 = 976.4 × 103    or    R = 99 mm   Ans.
The dimensions of the contact surface are shown in Fig. 10.27.

Fig. 10.27

From Fig. 10.27, we find that

                     1 2
99

sin sin sin 15º 8.54 mm
3 3

R
r r b− = α = × α = × = ...(i)

and 1 2 2 2 99 198 mmr r R+ = = × = ...(ii)

From equations (i) and (ii),

r1 = 103.27 mm,  and r2 = 94.73 mm  Ans.

Example 10.34. The contact surfaces in a cone clutch have an effective diameter of 75 mm.
The semi-angle of the cone is 15º. The coefficient of friction is 0.3. Find the torque required to
produce slipping of the clutch if an axial force applied is 180 N.

This clutch is employed to connect an electric motor running uniformly at 1000 r.p.m. with a
flywheel which is initially stationary. The flywheel has a mass of 13.5 kg and its radius of gyration is
150 mm. Calculate the time required for the flywheel to attain full speed and also the energy lost in
the slipping of the clutch.

Solution. Given : D = 75 mm or R = 37.5 mm = 0.0375 m ; α = 15º ; µ = 0.3 ; W  = 180 N ;
NF = 1000 r.p.m. or ωF = 2π × 1000/60 = 104.7 rad/s ; m = 13.5 kg ; k = 150 mm = 0.15 m

Torque required to produce slipping

We know that torque required to produce slipping,

T = µ.W.R.cosec α = 0.3 × 180 × 0.0375 × cosec 15º = 7.8 N-m  Ans.

Time required for the flywheel to attain full speed

Let tF = Time required for the flywheel to attain full speed in seconds, and

αF = Angular acceleration of the flywheel in rad/s2.

We know that the mass moment of inertia of the flywheel,

IF = m.k2 = 13.5 × (0.15)2 = 0.304 kg-m2
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∴  Torque required (T ),

         7.8 = IF.αF = 0.304 αF   or   αF = 7.8/0.304 = 25.6 rad/s2

and angular speed of the flywheel (ωF),

      104.7 = αF.tF = 25.6 tF   or    tF = 104.7/25.6 = 4.1 s   Ans.

Energy lost in slipping of the clutch

We know that the angle turned through by the motor and flywheel (i.e. clutch) in time 4.1 s
from rest,

              F F

1 1
Average angular velocity × time = 104.7 4.1 214.6 rad

2 2
W tθ = × × = × × =

∴  Energy lost in slipping of the clutch,

               =T.θ = 7.8 × 214.6 = 1674 N-m  Ans.

10.35. Centrifugal Clutch

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a
number of shoes on the inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the
shoes are covered with a friction material. These shoes, which can move radially in guides, are held

Fig. 10.28. Centrifugal clutch.

against the boss (or spider) on the driving shaft by means of
springs. The springs exert a radially inward force which is
assumed constant. The mass of the shoe, when revolving, causes
it to exert a radially outward force (i.e. centrifugal force). The
magnitude of this centrifugal force depends upon the speed at
which the shoe is revolving. A little consideration will show
that when the centrifugal force is less than the spring force, the
shoe remains in the same position as when the driving shaft
was stationary, but when the centrifugal force is equal to the
spring force, the shoe is just floating. When the centrifugal
force exceeds the spring force, the shoe moves outward and
comes into contact with the driven member and presses against
it. The force with which the shoe presses against the driven
member is the difference of the centrifugal force and the spring
force. The increase of speed causes the shoe to press harder Centrifugal clutch.
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and enables more torque to be transmitted.

In order to determine the mass and size of the shoes, the following procedure is adopted :

1.  Mass of the shoes

Consider one shoe of a centrifugal clutch as shown in Fig. 10.29.

Let m = Mass of each shoe,

n = Number of shoes,

r = Distance of centre of gravity of
the shoe from the centre of the
spider,

R = Inside radius of the pulley rim,

N = Running speed of the pulley in
r.p.m.,

ω = Angular running speed of the
pulley in rad/s = 2πN/60 rad/s,

ω1 = Angular speed at which the
engagement begins to take place,
and

µ = Coefficient of friction between
the shoe and rim.

We know that the centrifugal force acting on each shoe at the running speed,

*Pc = m.ω2.r

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to
take place,

Ps = m (ω1)
2 r

∴   The net outward radial force (i.e. centrifugal  force) with which the shoe presses against
the rim at the running speed

= Pc – Ps

and the frictional force acting tangentially on each shoe,
F = µ (Pc – Ps)

∴   Frictional torque acting on each shoe,

= F × R = µ (Pc – Ps) R

and total frictional torque transmitted,

T = µ (Pc – Ps) R × n = n.F.R

From this expression, the mass of the shoes (m) may be evaluated.

2.  Size of the shoes

Let l = Contact length of the shoes,

b = Width of the shoes,

* The radial clearance between the shoe and the rim being very small as compared to r, therefore it is neglected.
If, however, the radial clearance is given, then the operating radius of the mass centre of the shoe from the axis
of the clutch,
                             r1 = r + c, where c = Radial clearance.

Then                              P
c 
= m.ω2.r1, and P

s
 = m (ω1)

2 r1

Fig. 10.29. Forces on a shoe of
centrifugal clutch.
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R = Contact radius of the shoes. It is same as the inside radius of the rim

of the pulley.

θ = Angle subtended by the shoes at the centre of the spider in radians.

p = Intensity of pressure exerted on the shoe. In order to ensure reason-
able life, the intensity of  pressure may be taken as 0.1 N/mm2.

We know that         θ = l/R rad     or     l = θ.R

∴   Area of contact of the shoe,

A = l.b

and the force with which the shoe presses against the rim

= A × p = l.b.p

Since the force with which the shoe presses against the rim at the running speed is (Pc – Ps),
therefore

l.b.p = Pc – Ps

From this expression, the width of shoe (b) may be obtained.

Example 10.35. A centrifugal clutch is to transmit 15 kW at 900 r.p.m. The shoes are four in
number. The speed at which the engagement begins is 3/4th of the running speed. The inside radius
of the pulley rim is 150 mm and the centre of gravity of the shoe lies at 120 mm from the centre of the
spider. The shoes are lined with Ferrodo for which the coefficient of friction may be taken as 0.25.
Determine : 1. Mass of the shoes, and 2. Size of the shoes, if angle subtended by the shoes at the
centre of the spider is 60º and the pressure exerted on the shoes is 0.1 N/mm2.

Solution. Given : P = 15 kW = 15 × 103 W ; N = 900 r.p.m. or ω = 25 × 900/60 = 94.26 rad/s ;
n = 4 ; R = 150 mm = 0.15 m ; r = 120 mm = 0.12 m ; µ = 0.25

Since the speed at which the engagement begins (i.e. ω1) is 3/4th of the running speed (i.e.
ω), therefore

                          1

3 3
94.26 7 0.7 rad/s

4 4
ω = ω = × =

Let T = Torque transmitted at the running speed.
We know that power transmitted (P),

15 × 103 = T.ω = T × 94.26    or    T = 15 × 103/94.26 = 159 N-m
1.  Mass of the shoes

Let m = Mass of the shoes in kg.
We know that the centrifugal force acting on each shoe,

Pc = m.ω2.r = m (94.26)2 × 0.12 = 1066 m N
and the inward force on each shoe exerted by the spring i.e. the centrifugal force at the engagement
speed ω1,

Ps = m (ω1)2 r = m (70.7)2 × 0.12 = 600 m N
∴  Frictional force acting tangentially on each shoe,

F = µ (Pc – Ps) = 0.25 (1066 m – 600 m) = 116.5 m N
We know that the torque transmitted (T ),

159 = n.F.R = 4 × 116.5 m × 0.15 = 70 m    or   m = 2.27 kg  Ans.
2.  Size of the shoes

Let l = Contact length of shoes in mm,
b = Width of the shoes in mm,
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θ = Angle subtended by the shoes at the centre of the spider in radians
= 60º = π/3 rad, and ...(Given)

p = Pressure exerted on the shoes in N/mm2 = 0.1 N/mm2 ...(Given)

We know that         . 150 157.1 mm
3

l R
π= θ = × =

and l.b.p = Pc – Ps = 1066 m – 600 m = 466 m

∴    157.1 × b × 0.1 = 466 × 2.27 = 1058

or b = 1058/157.1 × 0.1 = 67.3  mm  Ans.
Example 10.36. A centrifugal clutch has four shoes which slide radially in a spider keyed to

the driving shaft and make contact with the internal cylindrical surface of a rim keyed to the driven
shaft. When the clutch is at rest, each shoe is pulled against a stop by a spring so as to leave a radial
clearance of 5 mm between the shoe and the rim. The pull exerted by the spring is then 500 N. The
mass centre of the shoe is 160 mm from the axis of the clutch.

If the internal diameter of the rim is 400 mm, the mass of each shoe is 8 kg, the stiffness of
each spring is 50 N/mm and the coefficient of friction between the shoe and the rim is 0.3 ; find the
power transmitted by the clutch at 500 r.p.m.

Solution. Given : n = 4 ; c = 5 mm ; S = 500 N ; r = 160 mm ; D = 400 mm or R = 200 mm
= 0.2 m ; m = 8 kg ; s = 50 N/mm ; µ = 0.3 ; N = 500 r.p.m. or ω = 2 π × 500/60 = 52.37 rad/s

We know that the operating radius,
r1 = r + c = 160 + 5 = 165 mm = 0.165 m

Centrifugal force on each shoe,
Pc = m.ω2.r1 = 8 (52.37)2 × 0.165 = 3620 N

and the inward force exerted by the spring,
P4 = S + c.s = 500 + 5 × 50 = 750 N

∴  Frictional force acting tangentially on each shoe,
F = µ (Pc – Ps) = 0.3 (3620 – 750) = 861 N

We know that total frictional torque transmitted by the clutch,
T = n.F.R = 4 × 861 × 0.2 = 688.8 N-m

∴  Power transmitted,

P = T.ω = 688.8 × 52.37 = 36 100 W = 36.1 kW  Ans.

EXERCISES
1. Find the force required to move a load of 300 N up a rough plane, the force being applied parallel to

the plane. The inclination of the plane is such that a force of 60 N inclined at 30º to a similar smooth
plane would keep the same load in equilibrium. The coefficient of friction is 0.3. [Ans. 146 N]

2. A square threaded screw of mean diameter 25 mm and pitch of thread 6 mm is utilised to lift a weight
of 10 kN by a horizontal force applied at the circumference of the screw. Find the magnitude of the
force if the coefficient of friction between the nut and screw is 0.02. [Ans. 966 N]

3. A bolt with a square threaded screw has mean diameter of 25 mm and a pitch of 3 mm. It carries an
axial thrust of 10 kN on the bolt head of 25 mm mean radius. If µ = 0.12, find the force required at the
end of a spanner 450 mm long, in tightening up the bolt.  [Ans. 110.8 N]

4. A turn buckle, with right and left hand threads is used to couple two railway coaches. The threads
which are square have a pitch of 10 mm and a mean diameter of 30 mm and are of single start type.
Taking the coefficient of friction as 0.1, find the work to be done in drawing the coaches together a
distance of 200 mm against a steady load of 20 kN.  [Ans. 3927 N-m]
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5. A vertical two start square threaded screw of a 100 mm mean diameter and 20 mm pitch supports a

vertical load of 18 kN. The axial thrust on the screw
is taken by a collar bearing of 250 mm outside diam-
eter and 100 mm inside diameter. Find the force re-
quired at the end of a lever which is 400 mm long in
order to lift and lower the load. The coefficient of
friction for the vertical screw and nut is 0.15 and
that for collar bearing is 0.20.
                                              [Ans. 1423 N ; 838 N]

6. A sluice gate weighing 18 kN is raised and lowered
by means of square threaded screws, as shown in
Fig.10.30. The frictional resistance induced by water
pressure against the gate when it is in its lowest
position is 4000 N.

The outside diameter of the screw is 60 mm and pitch
is 10 mm. The outside and inside diameter of washer
is 150 mm and 50 mm respectively. The coefficient
of friction between the screw and nut is 0.1 and for
the washer and seat is 0.12. Find :

1. The maximum force to be exerted at the ends of the lever for raising and lowering the gate, and

2. Efficiency of the arrangement. [Ans. 114 N ; 50 N ; 15.4%]

7. The spindle of a screw jack has single start square threads with an outside diameter of 45 mm and a
pitch of 10 mm. The spindle moves in a fixed nut. The load is carried on a swivel head but is not free
to rotate. The bearing surface of the swivel head has a mean diameter of 60 mm. The coefficient of
friction between the nut and screw is 0.12 and that between the swivel head and the spindle is 0.10.
Calculate the load which can be raised by efforts of 100 N each applied at the end of two levers each
of effective length of 350 mm. Also determine the velocity ratio and the efficiency of the lifting
arrangement.  [Ans. 9943 N ; 218.7 N ; 39.6%]

8. The lead screw of a lathe has acme threads of 50 mm outside diameter and 10 mm pitch. The included
angle of the thread is 29°. It drives a tool carriage and exerts an axial pressure of 2500 N. A collar
bearing with outside diameter 100 mm and inside diameter 50 mm is provided to take up the thrust. If
the lead screw rotates at 30 r.p.m., find the efficiency and the power required to drive the screw. The
coefficient of friction for screw threads is 0.15 and for the collar is 0.12. [Ans. 16.3% ; 75.56 W]

9. A flat foot step bearing 225 mm in diameter supports a load of 7.5 kN. If the coefficient of friction is
0.09 and r.p.m is 60, find the power lost in friction, assuming 1. Uniform pressure, and 2. Uniform
wear.  [Ans. 318 W ; 239 W]

10. A conical pivot bearing 150 mm in diameter has a cone angle of 120º. If the shaft supports an axial
load of 20 kN and the coefficient of friction is 0.03, find the power lost in friction when the shaft
rotates at 200 r.p.m., assuming 1. Uniform pressure, and 2. uniform wear.

[Ans. 727.5 W ; 545.6 W]

11. A vertical shaft supports a load of 20 kN in a conical pivot bearing. The external radius of the cone is
3 times the internal radius and the cone angle is 120º. Assuming uniform intensity of pressure as 0.35
MN/m2, determine the dimensions of the bearing.

If the coefficient of friction between the shaft and bearing is 0.05 and the shaft rotates at 120 r.p.m.,
find the power absorbed in friction.  [Ans. 47.7 mm ; 143 mm ; 1.50 kW]

12. A plain collar type thrust bearing having inner and outer diameters of 200 mm and 450 mm is sub-
jected to an axial thrust of 40 kN. Assuming coefficient of friction between the thrust surfaces as
0.025, find the power absorbed in overcoming friction at a speed of 120 r.p.m. The rate of wear is
considered to be proportional to the pressure and rubbing speed.  [Ans. 4.1 kW]

13. The thrust on the propeller shaft of a marine engine is taken up by 8 collars whose external and
internal diameters are 660 mm and 420 mm respectively. The thrust pressure is 0.4 MN/m2 and may

Fig. 10.30
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be assumed uniform. The coefficient of friction between the shaft and collars is 0.04. If the shaft
rotates at 90 r.p.m. ; find 1. total thrust on the collars ; and 2. power absorbed by friction at the bearing.

[Ans. 651 kN ; 68 kW]
14. A shaft has a number of collars integral with it. The external diameter of the collars is 400 mm and the

shaft diameter is 250 mm. If the uniform intensity of pressure is 0.35 N/mm2 and its coefficient of
friction is 0.05, estimate : 1. power absorbed in overcoming friction when the shaft runs at 105 r.p.m.
and carries a load of 150 kN, and 2. number of collars required. [Ans. 13.4 kW ; 6]

15. A car engine has its rated output of 12 kW. The maximum torque developed is 100 N-m. The clutch
used is of single plate type having two active surfaces. The axial pressure is not to exceed 85 kN/m2.
The external diameter of the friction plate is 1.25 times the internal diameter. Determine the dimen-
sions of the friction plate and the axial force exerted by the springs. Coefficient of friction = 0.3.

[Ans. 129.5 mm ; 103.6 mm ; 1433 N]
16. A single plate clutch (both sides effective) is required to transmit 26.5 kW at 1600 r.p.m. The outer

diameter of the plate is limited to 300 mm and intensity of pressure between the plates is not to exceed
68.5 kN/m2. Assuming uniform wear and a coefficient of friction 0.3, show that the inner diameter of
the plates is approximately 90 mm.

17. A multiplate clutch has three pairs of contact surfaces. The outer and inner radii of the contact sur-
faces are 100 mm and 50 mm respectively. The maximum axial spring force is limited to 1 kN. If the
coefficient of friction is 0.35 and assuming uniform wear, find the power transmitted by the clutch at
1500 r.p.m.  [Ans. 12.37 kW]

18. A cone clutch is to transmit 7.5 kW at 900 r.p.m. The cone has a face angle of 12º. The width of the
face is half of the mean radius and the normal pressure between the contact faces is not to exceed 0.09
N/mm2. Assuming uniform wear and the coefficient of friction between contact faces as 0.2, find the
main dimensions of the clutch and the axial force required to engage the clutch.

[Ans. R = 112 mm, b = 56 mm, r1 = 117.8 mm, r2 = 106.2 mm ; 1433 N]
19. A cone clutch with cone angle 20º is to transmit 7.5 kW at 750 r.p.m. The normal intensity of pressure

between the contact faces is not to exceed 0.12 N/mm2. The coefficient of friction is 0.2. If face width

is 1
5 th  of mean diameter, find : 1. the main dimensions of the clutch, and 2. axial force required

while running.  [Ans. R = 117 mm ; b = 46.8 mm ; r1 = 125 mm ; r2 = 109 mm ; 1395 N]
20. A centrifugal friction clutch has a driving member consisting of a spider carrying four shoes which are

kept from contact with the clutch case by means of flat springs until increase of centrifugal force
overcomes the resistance of the springs and the power is transmitted by friction between the shoes and
the case.
Determine the necessary mass of each shoe if 22.5 kW is to be transmitted at 750 r.p.m. with
engagement beginning at 75% of the running speed. The inside diameter of the drum is 300 mm and
the radial distance of the centre of gravity of each shoe from the shaft axis is 125 mm. Assume
µ = 0.25. [Ans. 5.66 kg]

DO YOU KNOW ?
1. Discuss briefly the various types of friction experienced by a body.

2. State the laws of

(i) Static friction ; (ii)  Dynamic friction ;

(iii) Solid friction ; and (iv) Fluid friction.

3. Explain the following :

(i) Limiting friction, (ii) Angle of friction, and

(iii) Coefficient of friction.

4. Derive from first principles an expression for the effort required to raise a load with a screw jack
taking friction into consideration.

5. Neglecting collar friction, derive an expression for mechanical advantage of a square threaded screw
moving in a nut, in terms of helix angle of the screw and friction angle.
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6. In a screw jack, the helix angle of thread is α and the angle of friction is φ. Show that its efficiency is

maximum, when 2α = (90º – φ).

7. For a screw jack having the nut fixed, derive the equation ( with usual notations),

                                                 
tan

.
tan ( ) . .mr r

αη =
α + φ + µ

8. Neglecting collar friction, from first principles, prove that the maximum efficiency of a square threaded

screw moving in a nut is 
1 sin

,
1 sin

− φ
+ φ

 where φ is the friction angle.

9. Write a short note on journal bearing.

10. What is meant by the expression ‘friction circle’? Deduce an expression for the radius of friction
circle in terms of the radius of the journal and the angle of friction.

11. From first principles, deduce an expression for the friction moment of a collar thrust bearing, stating
clearly the assumptions made.

12. Derive an expression for the friction moment for a flat collar bearing in terms of the inner radius r1,
outer radius r2, axial thrust W and coefficient of friction µ. Assume uniform intensity of pressure.

13. Derive from first principles an expression for the friction moment of a conical pivot assuming
(i) Uniform pressure, and (ii) Uniform wear.

14. A truncated conical pivot of cone angle φ rotating at speed N supports a load W . The smallest and
largest diameter of the pivot over the contact area are ‘d’ and ‘D’ respectively. Assuming uniform
wear, derive the expression for the frictional torque.

15. Describe with a neat sketch the working of a single plate friction clutch.

16. Establish a formula for the maximum torque transmitted by a single plate clutch of external and
internal  radii r1 and r2, if the limiting coefficient of friction is µ and the axial spring load is W . Assume
that the pressure intensity on the contact faces is uniform.

17. Which of the two assumptions-uniform intensity of pressure or uniform rate of wear, would you make
use of in designing friction clutch and why ?

18. Describe with a neat sketch a centrifugal clutch and deduce an equation for the total torque transmitted.

OBJECTIVE TYPE QUESTIONS

1. The angle of inclination of the plane, at which the body begins to move down the plane, is called

(a) angle of friction (b) angle of repose (c) angle of projection

2. In a screw jack, the effort required to lift the load W is given by

(a) P = W tan (α – φ) (b) P = W tan (α + φ)

(c) P = W cos (α – φ) (d) P = W cos (α + φ)

where α = Helix angle, and

φ = Angle of friction.

3. The efficiency of a screw jack is given by

(a)
tan ( )

tan

α + φ
α (b)

tan

tan ( )

α
α + φ

(c)
tan ( )

tan

α − φ
α (d)

tan

tan ( )

α
α − φ

4. The radius of a friction circle for a shaft of radius r rotating inside a bearing is

(a) r sin φ (b) r cos φ (c) r tan φ (d) r cot φ
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5. The efficiency of a screw jack is maximum, when

(a) 45º
2

φα = + (b) 45º
2

φα = − (c) 90ºα = +φ (d) 90ºα = −φ

6. The maximum efficiency of a screw jack is

(a)
1 sin

1 sin

− φ
+ φ (b)

1 sin

1 sin

+ φ
− φ (c)

1 tan

1 tan

− φ
+ φ (d)

1 tan

1 tan

+ φ
− φ

7. The frictional torque transmitted in a  flat pivot bearing, considering uniform pressure, is

(a)
1

. .
2

W R× µ (b)
2

. .
3

W R× µ (c)
3

. .
4

W R× µ (d) . .W Rµ

where µ = Coefficient of friction,

W  = Load over the bearing, and

R = Radius of the bearing surface.

8. The frictional torque transmitted in a conical pivot bearing, considering uniform wear, is

(a)
1

. . cosec
2

W R× µ α (b)
2

. . cosec
3

W R× µ α

(c)
3

. . cosec
4

W R× µ α (d) µ . W.R cosec α

where R = Radius of the shaft, and
α = Semi-angle of the cone.

9. The frictional torque transmitted by a disc or plate clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

10. The frictional torque transmitted by a cone clutch is same as that of

(a) flat pivot bearing (b) flat collar bearing

(c) conical pivot bearing (d) trapezoidal pivot bearing

ANSWERS
1. (a) 2. (b) 3. (b) 4. (a) 5. (b)

6. (a) 7. (b) 8. (a) 9. (b) 10. (d)
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